Skip to main content
Log in

Phytoextraction of Cadmium and Phytostabilisation with Mugwort (Artemisia vulgaris)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Artemisia vulgaris (mugwort) is a tall (1.0–2.0 m) high biomass perennial herb which accumulates considerable amounts of metals on contaminated sites. An outdoor pot experiment was conducted on a sandy, slightly alkaline soil of moderate fertility to study the uptake of cadmium and the distribution of Cd in plant tissues of A. vulgaris. Cadmium was applied as CdCl2 (a total of 1 l solution of 0, 10, 50 and 100 mg Cd l−1) to 12-l pots with a height of 25 cm. HNO3- and water-extractable concentrations of Cd were correlated with the applied Cd at 2-cm soil depth, but were not correlated at 20-cm soil depth, suggesting that Cd was either not mobile in the soil or completely taken up by mugwort roots. The Cd concentrations in different organs of A. vulgaris and litter increased with increasing soil contamination. Leaf/soil concentration ratios (BCFs) up to 65.93 ± 32.26 were observed. Translocation of Cd to the aboveground organs was very high. The leaf/root Cd concentration ratio (translocation factor) ranged from 2.07 ± 0.56 to 2.37 ± 1.31; however, there was no correlation of translocation factors to Cd enrichment, indicating similar translocation upon different soil contamination levels. In summary, A. vulgaris is tolerant to the metal concentrations accumulated, has a high metal accumulating biomass and accumulates Cd up to about 70% in the aboveground parts. Both a high phytoextraction potential and a high value for phytostabilisation would recommend mugwort for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alloway, B. J. (1995). Heavy metals in soils (2nd ed.). Glasgow: Blackie Academic and Professional.

    Google Scholar 

  • Álvarez-Ayuso, E. (2008). Cadmium in soil–plant systems: an overview. International Journal of Environment and Pollution, 33, 275–291.

    Article  Google Scholar 

  • Baker, A. J. M. (1981). Accumulators and excluders—Strategies in the response of plants to heavy metals. Journal of Plant Nutrition, 3, 643–654.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which can hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.

    CAS  Google Scholar 

  • Baker, A. J. M., & Proctor, J. (1990). The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles. Plant Systematics and Evolution, 173, 91–108.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., & Whiting, S. N. (2002). In search of the Holy Grail—A further step in understanding metal hyperaccumulation? The New Phytologist, 155, 1–4.

    Article  Google Scholar 

  • Barney, J. N., & DiTommaso, A. (2003). The biology of Canadian weeds. 118. Artemisia vulgaris L. Canadian Journal of Plant Science, 83, 205–215.

    Google Scholar 

  • Blume, H. P. (1981). Schwermetallverteilung und-bilanzen typischer Waldböden aus nordischem Geschiebemergel. Zeitschrift für Pflanzenernährung und Bodenkunde, 144, 156–163.

    Article  CAS  Google Scholar 

  • Chaney, R. L. (1983). Plant uptake of inorganic waste constituents. In J. F. Parr, P. B. Marsh, & J. M. Kla (Eds.), Land treatment of hazardous waste (pp. 50–76). Parkridge: Noyes Data Corporation.

    Google Scholar 

  • Dahmani-Muller, H., van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231–238.

    Article  CAS  Google Scholar 

  • Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11, 97–114.

    Article  CAS  Google Scholar 

  • Duvigneaud, P. (1975). Structure, biomasses, minéralomasses, productivité et captation du plomb dans quelques associations rudérales (Artemisietalia vulgaris). Bulletin de la Société Royale de Botaniquie Belgique, 108, 93–128.

    CAS  Google Scholar 

  • Ernst, W. H. O. (2000). Evolution of metal hyperaccumulation and phytoremediation hype. The New Phytologist, 146, 357–358.

    Article  Google Scholar 

  • Ernst, W. H. O., Mathys, W., Salaske, J., & Janiesch, P. (1974). Aspekte von Schwermetallbelastungen in Westfalen. Abhandlungen des Landesmuseums für Naturkunde Münster, 36(2), 1–33.

    Google Scholar 

  • Govindaraj, S., Kumari, B. D. R., Cioni, P. L., & Flamini, G. (2008). Mass propagation and essential oil analysis of Artemisia vulgaris. Journal of Bioscience and Bioengineering, 105, 176–183.

    Article  CAS  Google Scholar 

  • Grime, J. P., Hodgson, J. G., & Hunt, R. (1988). Comparative plant ecology. London: Unwin Hyman.

    Google Scholar 

  • Hunter, B. A., Johnson, M. S., & Thompson, D. J. (1987). Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. Journal of Applied Ecology, 24, 573–586.

    Article  CAS  Google Scholar 

  • Jensen, J. K., Holm, P. E., Nejrup, J., Larsen, M. B., & Borggaard, O. K. (2009). The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution, 157, 931–937.

    Article  CAS  Google Scholar 

  • Keller, C., Hammer, D., Kayser, A., Richner, W., Brodbeck, M., & Sennhauser, M. (2003). Root development and heavy metal phytoextraction efficiency: Comparison of different plant species in the field. Plant and Soil, 249, 67–81.

    Article  CAS  Google Scholar 

  • Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.

    Article  CAS  Google Scholar 

  • Klang-Westin, E., & Eriksson, J. (2003). Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant and Soil, 249, 127–137.

    Article  CAS  Google Scholar 

  • Kotz, L., Kaiser, G., Tschöpel, P., & Tölg, G. (1972). Aufschluß biologischer Matrices für die Bestimmung sehr niedriger Spurenelementgehalte bei begrenzter Einwaage mit Salpetersäure in einem Teflongefäß. Zeitschrift für Analytische Chemie, 260, 207–209.

    Article  CAS  Google Scholar 

  • Landberg, T., & Greger, M. (1996). Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180.

    Article  CAS  Google Scholar 

  • Lehmann, C., & Rebele, F. (2004). Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: A pot experiment. International Journal of Phytoremediation, 6, 169–183.

    Article  CAS  Google Scholar 

  • Little, P., & Martin, M. H. (1972). A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environmental Pollution, 3, 241–254.

    Article  CAS  Google Scholar 

  • McGrath, S. P., Zhao, F. J., & Lombi, E. (2002). Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 75, 1–56.

    Article  CAS  Google Scholar 

  • Meers, E., Van Slycken, S., Adriaensen, K., Ruttens, A., Vangronsveld, J., Du Laing, G., et al. (2010). The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: A field experiment. Chemosphere, 78, 35–41.

    Article  CAS  Google Scholar 

  • Migeon, A., Richaud, P., Guinet, F., Chalot, M., & Blaudez, D. (2009). Metal accumulation by woody species on contaminated sites in the north of France. Water, Air, and Soil Pollution, 204, 89–101.

    Article  CAS  Google Scholar 

  • Murphy, A. P., Coudert, M., & Barker, J. (2000). Plants as biomarkers for monitoring heavy metal contaminants on landfill sites using sequential extraction and inductively coupled plasma atomic emission spectrophotometry (ICP-AES). Journal of Environmental Monitoring, 2, 621–627.

    Article  CAS  Google Scholar 

  • Pearson, C. H., & Kirkham, M. B. (1981). Water relations of wheat cultivars grown with cadmium. Journal of Plant Nutrition, 3, 309–318.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees—A review. Environment International, 29, 529–540.

    Article  CAS  Google Scholar 

  • Pulford, I. D., Riddell-Black, D., & Stewart, C. (2002). Heavy metal uptake by willow clones from sewage sludge-treated soil: The potential for phytoremediation. International Journal of Phytoremediation, 4, 59–72.

    Article  CAS  Google Scholar 

  • Rebele, F. (1986). Die Ruderalvegetation der Industriegebiete von Berlin (West) und deren Immissionsbelastung. Landschaftsentwicklung und Umweltforschung, 43, 1–224.

    Google Scholar 

  • Rebele, F. (1989). Ruderal plants as bioindicators in the industrial areas of Westberlin. In J. Boháč and V. Ružička (Eds.) Proceedings of the Vth International Conference Bioindicatores deteriorisationis regionis, České Budějovice 1988, pp. 44–54.

  • Rebele, F., & Werner, P. (1984). Untersuchungen zur ökologischen Bedeutung industrieller Brach-und Restflächen in Berlin (West). Berlin: Freie Universität Berlin.

    Google Scholar 

  • Rebele, F., Surma, A., Kuznik, C., Bornkamm, R., & Brej, T. (1993). Heavy metal contamination of spontaneous vegetation and soil around the copper smelter “Legnica”. Acta Societatis Botanicorum Poloniae, 62, 53–57.

    Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., et al. (1995). Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 13, 468–474.

    Article  CAS  Google Scholar 

  • Schuman, G. E., & Howard, G. S. (1978). Artemisia vulgaris L.: An ornamental plant for disturbed land reclamation. Journal of Range Management, 31, 392–393.

    Article  Google Scholar 

  • Schwartz, C., Echevarria, G., & Morel, J. L. (2003). Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil, 249, 27–35.

    Article  CAS  Google Scholar 

  • Senatsverwaltung für Stadtentwicklung und Umweltschutz (Ed.) (1993). Umweltatlas Berlin, Bd. 1. Berlin: Kulturbuch.

  • Simon, L., Martin, H. W., & Adriano, D. C. (1996). Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) as phytoindicators of cadmium contamination. Water, Air, and Soil Pollution, 91, 351–362.

    Article  CAS  Google Scholar 

  • Thomas, W., Rühling, Å., & Simon, H. (1984). Accumulation of airborne pollutants (PAH, chlorinated hydrocarbons, heavy metals) in various plant species and humus. Environmental Pollution (Series A), 36, 295–310.

    Article  CAS  Google Scholar 

  • Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriansen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environmental Science and Pollution Research, 16, 765–794.

    Article  CAS  Google Scholar 

  • Wagenitz, G. (1987). Gustav Hegi, Illustierte Flora von Mitteleuropa, Band 4, Teil 4 (2nd ed.). Berlin: Verlag Paul Parey.

    Google Scholar 

  • Weston, L. A., Barney, J. N., & DiTommaso, A. (2005). A review of the biology and ecology of three invasive perennials in New York State: Japanese knotweed (Polygonum cuspidatum), mugwort (Artemisia vulgaris) and pale swallow-wort (Vincetoxicum rossicum). Plant and Soil, 277, 53–69.

    Article  CAS  Google Scholar 

  • Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank an anonymous reviewer for helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Rebele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebele, F., Lehmann, C. Phytoextraction of Cadmium and Phytostabilisation with Mugwort (Artemisia vulgaris). Water Air Soil Pollut 216, 93–103 (2011). https://doi.org/10.1007/s11270-010-0517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0517-7

Keywords

Navigation