Skip to main content
Log in

Fatty Acids, Sterols, Phenols and Antioxidant Activity of Phoenix theophrasti Fruits Growing in Crete, Greece

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

In the present study we report the chemical composition of the Cretan Phoenix theophrasti Gr. fruits, in comparison with dates, from its close relative Phoenix dactylifera L. for their nutritional value and their potential exploitation as a source of bioactive components such as phytosterols, lipids and polyphenols. The non polar dichloromethane (CH2Cl2) extract of the fruits was analysed by several techniques (TLC, CC, GC and GC-MS) and was found to consist mainly from fatty acids, hydrocarbons and phytosterols. Palmitic acid was the most abundant fatty acid, 12.49% of total saponifiables, while β-sitosterol was the most prevalent phytosterol, 29.46% of total unsaponifiable lipid fraction. The polar methanolic extract was examined for its total phenolic content, by the Folin–Ciocalteu assay, as well as for its antioxidant activity through DPPH assay, in comparison with previous studies on the fruits of several Phoenix dactylifera varieties. This fraction was found to possess strong antioxidant activity despite its lower content of phenolic compounds in comparison with previously studied Phoenix dactylifera specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CC:

column chromatography

FAME:

fatty acid methyl esters

GC:

gas chromatography

GC-MS:

gas chromatography mass spectrometry

NMR:

nuclear magnetic resonance spectroscopy

NP:

non polar extract

P:

polar extract

SFA:

saturated fatty acids

TLC:

thin layer chromatography

References

  1. Greuter W (1968) Le dattier de Théophraste, spécialité crétoise. Mus Geneve 2(81):14–16

    Google Scholar 

  2. Kislev ME, Hartmann A, Galili E (2004) Archaeobotanical and archaeoentomological evidence from a well at Atlit-Yam indicates colder, more humid climate on the Israeli Coast during the PPNC period. J Archaeol Sci 31(9):1301–1310, doi:10.1016/j.jas.2004. 02.010

    Article  Google Scholar 

  3. Al-Hooti S, Sidhu JS, Qabazard H (1998) Chemical composition of seeds of date fruit cultivars of United Arab Emirates. J Food Sci Technol 35:44–46

    CAS  Google Scholar 

  4. Fayadh JM, Al-Showiman SS (1990) Chemical composition of date palm (Phoenix dactylifera L.). J Chem Soc Pak 12:84–103

    CAS  Google Scholar 

  5. Ahmed AI, Ahmed AWK, Robinson RK (1995) Chemical composition of date varieties as influenced by the stage of ripening. Food Chem 54:305–309, doi:10.1016/0308-8146(95)00051-J

    Article  CAS  Google Scholar 

  6. Wang Y, Sunwoo H, Cherian G, Sim JS (2000) Fatty acid determination in chicken egg yolk: a comparison of different methods. Poult Sci 79:1168–1171

    CAS  Google Scholar 

  7. Zaki AK, Schmidt J, Hamouda FM, Adam G (1993) Steroidal constituents from pollen grains of Phoenix dactylifera. Planta Med 59(7):A613–A614, doi:10.1055/s-2006-959837

    Article  Google Scholar 

  8. Zipser B, Bradford JJ, Hollingsworth RI (1998) Cholesterol and its derivatives are the principal steroids isolated from the leech species Hirudo medicinalis. Comp Biochem Physiol C 120(2):269–282

    Article  CAS  Google Scholar 

  9. Fernández MI, Pedro JR, Seoane E (1983) Constituents of a hexane extract of Phoenix dactylifera. Phytochemistry 22(9):2087–2088, doi:10.1016/0031-9422(83)80054-5

    Article  Google Scholar 

  10. Akihisa T, Schimizu N, Parthasarathu G, Thakur S, Rosenstein FU, Tamura T, Matsumoto T (1987) Sterols of the Cucurbitaceae. Phytochemistry 26(6):1693–1700, doi:10.1016/S0031-9422(00)82270-0

    Article  CAS  Google Scholar 

  11. Gutfinger T (1981) Polyphenols in olive oils. J Am Oil Chem Soc 58:966–968, doi:10.1007/BF02659771

    Article  CAS  Google Scholar 

  12. Mansouri A, Embarek G, Kokkalou E, Kefalas P (2005) Phenolic profile and antioxidant activity of the Algerian ripe date palm fruit (Phoenix dactylifera). Food Chem 89(3):411–420, doi:10.1016/j.foodchem.2004.02.051

    Article  CAS  Google Scholar 

  13. Nenadis N, Tsimidou M (2002) Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH) tests. J Am Oil Chem Soc 79(12):1191–1195

    Article  CAS  Google Scholar 

  14. Besbes S, Blecker C, Deroanne C, Drira N-E, Attia H (2004) Date seeds: chemical composition and characteristic profiles of the lipid fraction. Food Chem 84:577–584, doi:10.1016/S0308-8146(03)00281-4

    Article  CAS  Google Scholar 

  15. Al-Shahib W, Marshall RJ (2003) Fatty acid content of the seeds from 14 varieties of date palm Phoenix dactylifera L. Int J Food Sci Technol 38:709–712, doi:10.1046/j.1365-2621.2003.00723.x

    Article  CAS  Google Scholar 

  16. Devshony S, Eteshola E, Shani A (1992) Characteristics and some potential applications of date palm (Phoenix dactylifera L.) seeds and seed oil. J Am Oil Chem Soc 69(6):595–597, doi:10.1007/BF02636115

    Article  CAS  Google Scholar 

  17. Mossa JS, Hifnawy MS, Mekkawi AG (1986) Phytochemical and biological investigation on date seeds (Phoenix dactylifera L.) produced in Saudi Arabia. Arab Gulf J Sci Res 4:495

    CAS  Google Scholar 

  18. Bennett RD, Shui-tze K, Heftmann E (1966) Isolation of estrone and cholesterol from the date palm, Phoenix dactylifera L. Phytochemistry 5(2):231–235, doi:10.1016/S0031-9422(00)85122-5

    Article  CAS  Google Scholar 

  19. de Jong N, Plat J, Mensink RP (2003) Metabolic effects of plant sterols and stanols. J Nutr Biochem 4:362–369, doi:10.1016/S0955-2863(03)00002-0

    Google Scholar 

  20. Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health promoting uses. Prog Lipid Res 41:457–500, doi:10.1016/S0163-7827(02)00006-1

    Article  CAS  Google Scholar 

  21. Mahran GH, Abdel-Wahab SM, Attia AM (1976) A phytochemical study of date palm pollen. Planta Med 29(2):172–175

    Article  Google Scholar 

  22. Vayalil PK (2002) Antioxidant and antimutagenic properties of aqueous extract of date fruit (Phoenix dactylifera L. Arecaceae). J Agric Food Chem 50:610–617, doi:10.1021/jf010716t

    Article  CAS  Google Scholar 

  23. Alencar SM, Oldoni TLC, Castro ML, Cabral LSR, Costa-Neto CM, Cury JA, Rosalen JA, Ikegaki M (2007) Chemical composition and biological activity of a new type of Brazilian propolis: red propolis. J Ethnopharmacol 113:278–283, doi:10.1016/j.jep.2007.06.005

    Article  CAS  Google Scholar 

  24. Jiang H, Ji B, Liang J, Zhou F, Yang Z, Zhang G (2006) Changes of contents and antioxidant activities of polyphenols during fruit development of four apple cultivars. Eur Food Res Technol 223:743–748, doi:10.1007/s00217-006-0262-8

    Article  CAS  Google Scholar 

  25. Vundac VB, Brantner AH, Placibat M (2007) Content of polyphenolic constituents and antioxidant activity of some Stachys taxa. Food Chem 104:1277–1281, doi:10.1016/j.foodchem.2007.01.036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chinou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liolios, C.C., Sotiroudis, G.T. & Chinou, I. Fatty Acids, Sterols, Phenols and Antioxidant Activity of Phoenix theophrasti Fruits Growing in Crete, Greece. Plant Foods Hum Nutr 64, 52–61 (2009). https://doi.org/10.1007/s11130-008-0100-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-008-0100-1

Keywords

Navigation