Skip to main content
Log in

Lorentz Force Eddy Current Testing: a Prototype Model

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

We report an investigation of the motion of a free-falling permanent magnet in an electrically conducting pipe containing an idealized defect. This problem represents a highly simplified yet enlightening version of a method called Lorentz force eddy current testing which is a modification of the traditional eddy current testing technique. Our investigation is a combination of analytical theory, numerical simulation and experimental validation. The analytical theory allows a rigorous prediction about the relation between the size of the defect and the change in falling time which represents the central result of the present work. The numerical simulation allows to overcome limitations inherent in the analytical theory. We test our predictions by performing a series of experiments. We conclude that our theory properly captures the essence of Lorentz force eddy current testing although a refinement of the experiment is necessary to reduce the discrepancy to the predictions. In spite of its apparent simplicity the present system can serve as a prototype and benchmark for future research on Lorentz force eddy current testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Using an electrical conductivity of \({20}~\mathrm{MS/m}\) we obtain at a measurement frequency (AC-field) of 1 kHz an skin depth of 3.56 mm whereas the DC-field at a velocity of \({8}~\mathrm{cm/s}\) provides 89.21 mm for an inner radius of the pipe of 8 mm.

References

  1. Hellier, C.J.: Handbook of Nondestructive Evaluation. McGraw-Hill, New York (2003)

    Google Scholar 

  2. Cervantes, M., et al.: Method and device for measuring a parameter of a metal bed. WO 00/58695, patent (2000)

  3. Thess, A., Votyakov, E.V., Kolesnikov, Y.: Lorentz force velocimetry. Phys. Rev. Lett. 96, 164501 (2006). 4 pp. doi:10.1103/PhysRevLett.96.164501

    Article  Google Scholar 

  4. Garshelis, I.J., Tollens, S.P.I.: Non-destructive evaluation via measurement of magnetic drag force. WO 2007/053519 A2, patent application (2007)

  5. Brauer, H., Ziolkowski, M.: Eddy current testing of metallic sheets with defects using force measurements. Serbian J. Electr. Eng. 5(1), 11–20 (2008)

    Article  Google Scholar 

  6. Reitz, J.R.: Force on moving magnets due to eddy currents. J. Appl. Phys. 41(5), 2067–2071 (1970)

    Article  Google Scholar 

  7. Reitz, J.R., Davis, L.C.: Force on a rectangular coil moving above a conducting slab. J. Appl. Phys. 43(4), 1548–1553 (1972)

    Article  Google Scholar 

  8. Knyazev, B.A., Kotel’nikov, I.A., Tyutin, A.A., Cherkassky, V.S.: Braking of a magnetic dipole moving with an arbitrary velocity through a conducting pipe. Phys. Uspekhi 49(9), 937–946 (2006)

    Article  Google Scholar 

  9. Derby, N., Olbert, S.: Cylindrical magnets and ideal so-lenoids. Am. J. Phys. 78(3), 229–235 (2010)

    Article  Google Scholar 

  10. Amrani, D., Paradis, P.: Faraday’s law of induction gets free-falling magnet treatment. Phys. Educ. 40(4), 313–314 (2005)

    Article  Google Scholar 

  11. Hahn, K.D., Johnson, E.M., Brokken, A., Baldwin, S.: Eddy current damping of a magnet moving through a pipe. Am. J. Phys. 66(12), 1066–1076 (1998)

    Article  Google Scholar 

  12. Clack, J.A.M., Toepker, T.P.: Magnetic induction experiment. Phys. Teach. 28(4), 236–238 (1990)

    Article  Google Scholar 

  13. Newton, I.: Philosophiae Naturalis Principia Mathematica (1687)

  14. Thess, A., Votyakov, E., Knaepen, B., Zikanov, O.: Theory of the Lorentz force flowmeter. New J. Phys. 9 (2007). doi:10.1088/1367-2630/9/8/299

  15. Levin, Y., de Silveira, F.L., Rizzato, F.B.: Electromagnetic braking: a simple quantitative model. Am. J. Phys. 74(9), 815–817 (2006)

    Article  Google Scholar 

  16. Davidson, P.A.: An Introduction to Magnetohydrodynamics. Cambridge University Press, Cambridge (2001). ISBN 0-521-79487-0

    Book  MATH  Google Scholar 

  17. Comsol multiphysics. User guide. http://www.comsol.com

  18. Reitz, J.R., Davis, L.C.: Force on a rectangular coil moving above a conducting slab. J. Appl. Phys. 43(4) (1972). doi:10.1063/1.1661359

  19. DIN Deutsches Institut für Normung e.V.: Guide to the Expression of Uncertainty in Measurement. Beuth Verlag GmbH, Berlin (1995). ISBN 3-410-13405-0

    Google Scholar 

  20. Zec, M., Uhlig, R., Brauer, H.: An overview of numerical modelling of linear motion in electromagnetics using finite element method and commercial software. In: International Ph.D. Seminar “Computational Electromagnetics and Optimization in Electrical Engineering”, Sofia, Bulgaria (2010)

    Google Scholar 

Download references

Acknowledgements

The present work is supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the Research Training Group “Lorentz force velocimetry and Lorentz force eddy current testing” (GK 1567) at the Ilmenau University of Technology. The authors thank the reviewers for their careful and insightful reviews which have significantly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert P. Uhlig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlig, R.P., Zec, M., Brauer, H. et al. Lorentz Force Eddy Current Testing: a Prototype Model. J Nondestruct Eval 31, 357–372 (2012). https://doi.org/10.1007/s10921-012-0147-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-012-0147-7

Keywords

Navigation