Skip to main content
Log in

Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We introduce an efficient approach for sequential protein backbone assignment based on two complementary proton-detected 4D solid-state NMR experiments that correlate \( {\text{H}}_{{\text{i}}}^{{\text{N}}} \)/Ni with CAi/COi or CAi−1/COi−1. The resulting 4D spectra exhibit excellent sensitivity and resolution and are amenable to (semi-)automatic assignment approaches. This strategy allows to obtain sequential connections with high confidence as problems related to peak overlap and multiple assignment possibilities are avoided. Non-uniform sampling schemes were implemented to allow for the acquisition of 4D spectra within a few days. Rather moderate hardware requirements enable the successful demonstration of the method on deuterated type III secretion needles using a 600 MHz spectrometer at a spinning rate of 25 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Barbet-Massin E (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136(35):12489–12497

  • Chen YK, Zhang ZF, Tang XQ, Li JP, Glaubitz C, Yang J (2014) Conformation and topology of diacylglycerol kinase in E. coli membranes revealed by solid-state NMR spectroscopy. Angew Chem Int Ed 53:5624–5628

    Article  Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881

    Article  Google Scholar 

  • Chevelkov V, Habenstein B, Loquet A, Giller K, Becker S, Lange A (2014) Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins. J Magn Reson 242:180–188

    Article  ADS  Google Scholar 

  • Coggins BE, Venters RA, Zhou P (2010) Radial sampling for fast NMR: concepts and practices over three decades. Prog Nucl Magn Reson Spectrosc 57:381–419

    Article  Google Scholar 

  • Cornelis GR, WolfWatz H (1997) The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23:861–867

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141

    ADS  Google Scholar 

  • Gullion T, Baker DB, Conradi MS (1990) New, compensated carr-purcell sequences. J Magn Reson 89:479–484

    ADS  Google Scholar 

  • Han Y, Ahn J, Concel J, Byeon IJL, Gronenborn AM, Yang J, Polenova T (2010) Solid-state NMR studies of HIV-1 capsid protein assemblies. J Am Chem Soc 132:1976–1987

    Article  Google Scholar 

  • Hu FH, Luo WB, Hong M (2010) Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–508

    Article  ADS  Google Scholar 

  • Hu KN, Qiang W, Tycko R (2011) A general Monte Carlo/simulated annealing algorithm for resonance assignment in NMR of uniformly labeled biopolymers. J Biomol NMR 50:267–276

    Article  Google Scholar 

  • Huber M, Hiller S, Schanda P, Ernst M, Boeckmann A, Verel R, Meier BH (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918

    Article  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional poisson gap scheduling. J Biomol NMR 52:315–327

    Article  Google Scholar 

  • Igumenova TI, Wand AJ, McDermott AE (2004) Assignment of the backbone resonances for microcrystalline ubiquitin. J Am Chem Soc 126:5323–5331

    Article  Google Scholar 

  • Ishii Y, Yesinowski JP, Tycko R (2001) Sensitivity enhancement in solid-state 13C NMR of synthetic polymers and biopolymers by 1H NMR detection with high-speed magic angle spinning. J Am Chem Soc 123:2921–2922

    Article  Google Scholar 

  • Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3:605–607

    Article  Google Scholar 

  • Jones DH, Opella SJ (2006) Application of maximum entropy reconstruction to PISEMA spectra. J Magn Reson 179:105–113

    Article  ADS  Google Scholar 

  • Jung Y-S, Zweckstetter M (2004) Mars—robust automatic backbone assignment of proteins. J Biomol NMR 30:11–23

    Article  Google Scholar 

  • Knight MJ et al (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state mas nmr spectroscopy. Angew Chem Int Ed Engl 50:11697–11701

    Article  Google Scholar 

  • Knight MJ et al (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100

    Article  ADS  Google Scholar 

  • Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440:959–962

    Article  ADS  Google Scholar 

  • Lin EC, Opella SJ (2013) Sampling scheme and compressed sensing applied to solid-state NMR spectroscopy. J Magn Reson 237:40–48

    Article  ADS  Google Scholar 

  • Linser R (2012) Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers. J Biomol NMR 52:151–158

    Article  Google Scholar 

  • Linser R (2014) Solid-state NMR structure determination from diagonal-compensated proton–proton restraints. J Am Chem Soc 136(31):11002–11010

  • Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193:89–93

    Article  ADS  Google Scholar 

  • Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011) Structure calculation from unambiguous long-range amide and Methyl H-1-H-1 distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912

    Article  Google Scholar 

  • Loquet A et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    ADS  Google Scholar 

  • Nielsen NC, Bildsoe H, Jakobsen HJ, Levitt MH (1994) Double-quantum homonuclear rotary resonance: Efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance. J Chem Phys 101:1805–1812

    Article  ADS  Google Scholar 

  • Nielsen J, Kulminskaya N, Bjerring M, Nielsen N (2014) Automated robust and accurate assignment of protein resonances for solid state NMR. J Biomol NMR 59:119–134

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27:165–173

    Article  Google Scholar 

  • Reif B, Griffin RG (2003) 1H detected 1H,15 N correlation spectroscopy in rotating solids. J Magn Reson 160:78–83

    Article  ADS  Google Scholar 

  • Schmidt E et al (2013) Automated solid-state NMR resonance assignment of protein microcrystals and amyloids. J Biomol NMR 56:243–254

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved Sequence for broad-band decoupling—WALTZ-16. J Magn Reson 52:335–338

    ADS  Google Scholar 

  • Suiter C et al (2014) Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range. J Biomol NMR 59:57–73

    Article  Google Scholar 

  • Sun SJ, Yan S, Guo CM, Li MY, Hoch JC, Williams JC, Polenova T (2012) A time-saving strategy for MAS NMR spectroscopy by combining nonuniform sampling and paramagnetic relaxation assisted condensed data collection. J Phys Chem B 116:13585–13596

    Article  Google Scholar 

  • Trent Franks W, Atreya H, Szyperski T, Rienstra C (2010) GFT projection NMR spectroscopy for proteins in the solid state. J Biomol NMR 48:213–223

    Article  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  ADS  Google Scholar 

  • Wang S (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012

    Article  Google Scholar 

  • Wylie BJ, Bhate MP, McDermott AE (2014) Transmembrane allosteric coupling of the gates in a potassium channel. Proc Natl Acad Sci USA 111:185–190

    Article  ADS  Google Scholar 

  • Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172

    Article  ADS  Google Scholar 

  • Zhou D et al (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54:291–305

    Article  Google Scholar 

Download references

Acknowledgments

We thank Karin Giller and Brigitta Angerstein for expert technical assistance. This work was supported by the Max Planck Society, the Leibniz-Institut für Molekulare Pharmakologie and the DFG (Emmy Noether Fellowship to A.L). A.L. and S.X. acknowledge funding from the CRC803 (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Lange.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 616 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Chevelkov, V., Becker, S. et al. Towards automatic protein backbone assignment using proton-detected 4D solid-state NMR data. J Biomol NMR 60, 85–90 (2014). https://doi.org/10.1007/s10858-014-9859-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9859-6

Keywords

Navigation