Skip to main content
Log in

Preparing elementary prospective teachers to teach early algebra

  • Published:
Journal of Mathematics Teacher Education Aims and scope Submit manuscript

Abstract

Researchers have argued that integrating early algebra into elementary grades will better prepare students for algebra. However, currently little research exists to guide teacher preparation programs on how to prepare prospective elementary teachers to teach early algebra. This study examines the insights and challenges that prospective teachers experience when exploring early algebraic reasoning. Results from this study showed that developing informal representations for variables and unknowns and learning about the two interpretations of the equal sign were meaningful new insights for the prospective teachers. However, the prospective teachers found it a conceptual challenge to identify the relationships contained in algebraic expressions, to distinguish between unknowns and variables, to bracket their knowledge of formal algebra and to represent subtraction from unknowns or variables. These findings suggest that exploring early algebra is non-trivial for elementary prospective teachers and likely necessary to adequately prepare them to teach early algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asquith, P., Stephens, A. C., Knuth, E. J., & Alibali, M. W. (2007). Middle school mathematics teachers’ knowledge of students’ understanding of core algebraic concepts: Equal sign and variable. Mathematical Thinking and Learning, 9(3), 249–272. doi:10.1080/10986060701360910.

    Article  Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. doi:10.1177/0022487108324554.

    Article  Google Scholar 

  • Beach, K. (1999). Consequential transitions: A sociocultural expedition beyond transfer in education. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of research in education (Vol. 24, pp. 101–139). Washington, DC: American Educational Research Association.

    Google Scholar 

  • Berk, D., & Hiebert, J. (2009). Improving the mathematics preparation of elementary teachers, one lesson at a time. Teachers and Teaching: theory and practice, 15(3), 337–356. doi:10.1080/13540600903056692.

    Article  Google Scholar 

  • Bernard, H. E. (1988). Research methods in cultural anthropology. Beverly Hills: Sage.

    Google Scholar 

  • Blanton, M., Levi, L., Crites, T., & Dougherty, B. J. (2011). Developing essential understandings of algebraic thinking for teaching mathematics in grades 3-5 (R. M. Zbiek, Series Ed., & B. J. Dougherty, Vol. Ed.). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Blanton, M., Schifter, D., Inge, V., Lofgren, P., Willis, C., Davis, F., & Confrey, J. (2007). Early algebra. In V. J. Katz (Ed.), Algebra: gateway to a technological future (pp. 7–14). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Cady, J., Meier, S. L., & Lubinski, C. A. (2006). Developing mathematics teachers: The transition from preservice to experienced teacher. The Journal of Educational Research, 99(5), 295–306. doi:10.3200/JOER.99.5.295-306.

    Article  Google Scholar 

  • Cai, J., Ng, S. F., & Moyer, J. C. (2011). Developing students’ algebraic thinking in earlier grades: Lessons from China and Singapore. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 25–41). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Carpenter, T. P., Levi, L., & Farnsworth, V. (2000). Building a foundation for learning algebra in the elementary grades. Brief, 1(2), 1–4.

    Google Scholar 

  • Carraher, D. W., Schliemann, A. D., & Brizuela, B. M. (2000). Early algebra, early arithmetic: Treating operations as functions. Plenary address presented at the Twenty-Second Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, Arizona.

  • Carraher, D. W., Schliemann, A. D., & Brizuela, B. M. (2001). Can young students operate on unknowns? In Proceedings of the Twenty-fifth conference of the international group for the psychology of mathematics education (Vol. 1, pp. 130–140). Utrecht: PME.

  • Carraher, D. W., Schliemann, A. D., Brizuela, B. M., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115. doi:10.2307/30034843.

    Google Scholar 

  • Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same as algebra early. In J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 235–272). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Chazan, D. (1996). Algebra for all students? The algebra policy debate. Journal of Mathematical Behavior, 15(3), 455–477. doi:10.1016/S0732-3123(96)90030-9.

    Article  Google Scholar 

  • Chazan, D., Yerushalmy, M., & Leikin, R. (2008). An analytic conception of equation and teachers’ views of school algebra. Journal of Mathematical Behavior, 27, 87–100. doi:10.1016/j.jmathb.2008.07.003.

    Article  Google Scholar 

  • Christiansen, I. (1999). Are theories in mathematics education of any use to practice? For the Learning of Mathematics, 19(1), 20–23.

    Google Scholar 

  • Confrey, J. (1998). What do we know about K-14 students’ learning of algebra? In National Council of Teachers of Mathematic (Ed.), The nature and role of algebra in the K-14 curriculum (pp. 37–40). Washington, DC: National Academy Press.

    Google Scholar 

  • Dobrynina, G., & Tsankova, J. (2005). Algebraic reasoning of young students and preservice elementary teachers. In G. M. Lloyd, M. Wilson, J. L. M. Wilkins, & S. L. Behm (Eds.), Proceedings of the 27th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education. Retrieved April 22, 2014 from http://filebox.vt.edu/users/lloyd/pmena2005/Print_Proceedings/Proc9_RR3.pdf

  • Ellis, A. B. (2011). Algebra in the middle school: Developing functional relationships through quantitative reasoning. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 215–238). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Fey, J., Doerr, H., Farinelli, R., Farley, R., Lacampagne, C., Martin, G., et al. (2007). Preparation and professional development of algebra teachers. In V. J. Katz (Ed.), Algebra: gateway to a technological future (pp. 27–32). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19–25.

    Google Scholar 

  • Goodson-Espy, T. (1998). The roles of reification and reflective abstraction in the development of abstract thought: Transitions from arithmetic to algebra. Educational Studies in Mathematics, 36, 219–245. doi:10.1023/A:1003473509628.

    Article  Google Scholar 

  • Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1), 59–78. doi:10.1007/BF01284528.

    Article  Google Scholar 

  • Hiebert, J. (1999). Relationship between research and the NCTM standards. Journal for Research in Mathematics Education, 30(1), 3–19. doi:10.2307/749627.

    Article  Google Scholar 

  • Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38(3), 258–288. doi:10.2307/30034868.

    Google Scholar 

  • Kaput, J. J. (1995). Long-term algebra reform: Democratizing access to big ideas. In C. Lacampagne, W. Blair, & J. Kaput (Eds.), The algebra colloquium (Vol. 1, pp. 1–44). Washington, DC: US Department of Education.

    Google Scholar 

  • Kaput, J. J. (1998). Transforming algebra from an engine of inequity to an engine of mathematical power by “algebrafying” the K-12 curriculum. In National Council of Teachers of Mathematics & Mathematical Sciences Education Board (Eds.), The nature and role of algebra in the K14 curriculum: Proceedings of a national symposium (pp. 25–26). Washington, DC: National Academy Press.

  • Kaput, J. J., & Blanton, M. L. (2000). Algebraic reasoning in the context of elementary mathematics: Making it implementable on a massive scale. Dartmouth, MA: National Center for Improving Student Learning and Achievement in Mathematics and Science.

    Google Scholar 

  • Katz, V. J. (2007). Executive summary. In V. J. Katz (Ed.), Algebra: Gateway to a technological future (pp. 1–6). Washington, DC: Mathematical Association of America.

    Google Scholar 

  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326. doi:10.1007/BF00311062.

    Article  Google Scholar 

  • Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 390–419). New York: Macmillan.

    Google Scholar 

  • Kieran, C. (2004). Algebraic thinking in the early grades: What is it? The Mathematics Educator, 8(1), 139–151.

    Google Scholar 

  • Kieran, C., Boileau, A., & Garançon, M. (1996). Introducing algebra by means of a technology-supported functional approach. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching (pp. 257–294). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Knuth, E. J., Alabali, M. W., McNeil, N. M., Weinberg, A., & Stephens, A. C. (2005). Middle school students’ understanding of core algebraic concepts: Equivalence and variable. ZDM–The International Journal on Mathematics Education, 37(1), 68–76. doi:10.1007/BF02655899.

    Article  Google Scholar 

  • Koedinger, K. R., & Nathan, M. (2004). The real story behind story problems: Effects of representations on quantitative reasoning. Journal of the Learning Sciences, 13(2), 129–164. doi:10.1207/s15327809jls1302_1.

    Article  Google Scholar 

  • Ma, X. (2005). Early acceleration of students in mathematics: Does it promote growth and stability of growth in achievement across mathematical areas? Contemporary Educational Psychology, 30, 439–460. doi:10.1016/j.cedpsych.2005.02.001.

    Article  Google Scholar 

  • Mason, J. (2011). Commentary on Part III. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 557–577). Heidelberg: Springer.

    Chapter  Google Scholar 

  • McNeil, N. M., Grandau, L., Knuth, E. J., Alibali, M. W., Stephens, A. C., Hattikudur, S., & Krill, D. E. (2006). Middle-school students’ understanding of the equal sign: The books they read can’t help. Cognition and Instruction, 24(3), 367–385. doi:10.1207/s1532690xci2403_3.

    Article  Google Scholar 

  • Moss, J., & London McNab, S. (2011). An approach to geometric and numeric patterning that fosters second grade students’ reasoning and generalizing about functions and covariation. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 277–301). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Nathan, M. J., & Koedinger, K. R. (2000). Teachers’ and researchers’ beliefs about the development of algebraic reasoning. Journal for Research in Mathematics Education, 31(2), 168–190. doi:10.2307/749750.

    Article  Google Scholar 

  • Nathan, M. J., & Koellner, K. (2007). A framework for understanding and cultivating the transition from arithmetic to algebraic reasoning. Mathematical Thinking and Learning, 9(3), 179–192. doi:10.1080/10986060701360852.

    Article  Google Scholar 

  • Nemirovsky, R. (2011). Episodic feelings and transfer of learning. Journal of the Learning Sciences, 20(2), 308–337. doi:10.1080/10508406.2011.528316.

    Article  Google Scholar 

  • Nicol, C. (2006). Designing a pedagogy of inquiry in teacher education: Moving from resistance to listening. Studying Teacher Education: A journal of self-study of teacher education practices, 2(1), 25–41. doi:10.1080/17425960600557454.

    Article  Google Scholar 

  • Parnafes, O. (2007). What does “fast” mean? Understanding the physical world through computational representations. The Journal of the Learning Sciences, 16(3), 415–450. doi:10.1080/10508400701413443.

    Article  Google Scholar 

  • Philipp, R. A. (1992). The many uses of algebraic variables. The Mathematics Teacher, 85(7), 557–561.

    Google Scholar 

  • Radford, L. (2001). Factual, contextual and symbolic generalizations in algebra. In M. van den Heuvel Panhuizen (Ed.), Proceedings from the 25th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 81–88). Utrecht: PME.

  • Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 303–322). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Radford, L. (2012). Early algebraic thinking, epistemological, semiotic, and developmental issues. Regular lecture presented at the 12th International Congress on Mathematical Education, Seoul, Korea. Retrieved at April 7, 2014, from http://www.icme12.org/ upload/submission/1942F.pdf

  • Schliemann, A. D., Carraher, D. W., & Brizuela, B. M. (2000, April). From quantities to ratio, functions, and algebraic relations. Paper presented at the meeting of the American Educational Research Association. New Orleans, LA.

  • Schliemann, A. D., Carraher, D. W., Brizuela, B. M., Earnest, D., Goodrow, A., Lara-Roth, S., et al. (2003). Algebra in elementary school. In N. Pateman, B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PME-NA (Vol. 4, pp. 127–134). Honolulu, HI: CRDG, College of Education, University of Hawai’i.

  • Schliemann, A. D., Goodrow, A., & Lara-Roth, S. (2001, April). Functions and graphs in third grade. Paper presented at the 2001 NCTM Research Presession, Orlando, FL.

  • Schoenfeld, A. H., & Arcavi, A. (1988). On the meaning of variable. The Mathematics Teacher, 81(6), 420–427.

    Google Scholar 

  • Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification: The case of Algebra. Educational Studies in Mathematics, 26(2/3), 191–228. doi:10.1007/BF01273663.

    Article  Google Scholar 

  • Simon, M. A., Tzur, R., Heinz, K., Kinzel, M., & Schwan, M. S. (2000). Characterizing a perspective underlying the practice of mathematics teachers in transition. Journal for Research in Mathematics Education, 31(5), 579–601. doi:10.2307/749888.

    Article  Google Scholar 

  • Smith, J., & Thompson, P. W. (2007). Quantitative reasoning and the development of algebraic reasoning. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 95–132). New York: Erlbaum.

    Google Scholar 

  • Stacey, K., & MacGregor, M. (2000). Learning the algebraic method of solving problems. Journal of Mathematical Behavior, 18(2), 149–167. doi:10.1016/S0732-3123(99)00026-7.

    Article  Google Scholar 

  • Stephens, A. C. (2006). Equivalence and relational thinking: Preservice elementary teachers’ awareness of opportunities and misconceptions. Journal of Mathematics Teacher Education, 9, 249–278. doi:10.1007/s10857-006-9000-1.

    Article  Google Scholar 

  • Stephens, A. C. (2008). What “counts” as algebra in the eyes of preservice elementary teachers? Journal of Mathematical Behavior, 27, 33–47. doi:10.1016/j.jmathb.2007.12.002.

    Article  Google Scholar 

  • Strauss, A. L. (1987). Qualitative analysis for social scientists. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Strauss, A. L., & Corbin, J. (1990). Basics of qualitative research; grounded theory procedures and techniques. Newbury Park, CA: Sage.

    Google Scholar 

  • Strauss, A., & Corbin, J. (1994). Grounded theory methodology: An overview. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 273–285). Thousand Oaks: Sage Publications.

    Google Scholar 

  • Swafford, J. O., & Langrall, C. W. (2000). Grade 6 students’ preinstructional use of equations to describe and represent problem situations. Journal for Research in Mathematics Education, 31(1), 89–112. doi:10.2307/749821.

    Article  Google Scholar 

  • Tanisli, D., & Kose, N. Y. (2013). Pre-service mathematic teachers’ knowledge of students about the algebraic concepts. Australian Journal of Teacher Education, 38(2), 1–18. doi:10.14221/ajte.2013v38n2.1.

    Article  Google Scholar 

  • van Reeuwijk, M. (1995, April). The role of realistic situations in developing tools for solving systems of equations. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.

  • van Reeuwijk, M., & Wijers, M. (1997). Students’ constructions of formulas in context. Mathematics Teaching in the Middle School, 2(4), 230–236.

    Google Scholar 

  • Viadero, D. (2010). “Algebra-for-all” push found to yield poor results. Education Week. Retrieved from http://go.galegroup.com/ps/i.do?id=GALE%7CA218545535&v=2.1&u=udel_main&it=r&p=AONE&sw=w&asid=11345688c96d1937c337a75aa6d71352

  • Warren, E. (2003). The role of arithmetic structure in the transition from arithmetic to algebra. Mathematics Education Research Journal, 15(2), 122–137. doi:10.1007/BF03217374.

    Article  Google Scholar 

  • Watanabe, T. (2011). Shiki: A critical foundation for school algebra in Japanese elementary school mathematics. In J. Cai & E. Knuth (Eds.), Early algebraization: A global dialogue from multiple perspectives (pp. 215–238). Heidelberg: Springer.

    Google Scholar 

  • Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19(5), 371–384.

    Article  Google Scholar 

  • Welder, R. M. (2012). Improving algebra preparation: Implications from research on student misconceptions and difficulties. School Science and Math, 112(4), 255–264. doi:10.1111/j.1949-8594.2012.00136.x.

    Article  Google Scholar 

  • Woods, D., & Fassnacht, C. (2009). Transana (Version 2.41) [Computer software]. Madison, WI: Wisconsin Center for Education Research, University of Wisconsin-Madison. Available from http://www.transana.org.

  • Zolkower, B., & Abrahamson, D. (2009, April). Reinventing algebra brick by brick: Paradigmatic-problematic situations as vehicles for mathematizing and didactizing. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.

Download references

Acknowledgments

Thanks to James Hiebert, Amanda Jansen, Jungeun Park and the reviewers for their helpful comments on drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Hohensee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohensee, C. Preparing elementary prospective teachers to teach early algebra. J Math Teacher Educ 20, 231–257 (2017). https://doi.org/10.1007/s10857-015-9324-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10857-015-9324-9

Keywords

Navigation