Skip to main content
Log in

Density and thermal expansion of liquid Al–Si alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The density of Al-rich liquid Al–Si alloys was measured contactlessly on electromagnetically levitated samples using optical dilatometry. Data were obtained for samples covering compositions up to 50 at.% Si and in a temperature range between 650 and 1500 °C. The densities can be described as linear functions of temperature with negative slopes. Moreover, they increase monotonically with an increase of Si concentration. In a temperature range between 1100 and 1400 °C, it can be deduced from the composition dependence of the density that virtually no excess volume arises during alloying of the pure elements. For lower temperatures an excess volume is discussed, considering the temperature dependence of Si density literature data. The density data were integrated in a thermodynamic model description of the Al–Si system. In this way volume changes during solidification and changes in phase equilibria as function of pressure can be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. M. Rettenmayr, A. Löffler, Institut für Materialwissenschaft und Werkstofftechnologie, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.

  2. R. Schmid-Fetzer, J. Gröbner, Institut für Metallurgie, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany.

References

  1. Shivkumar S, Wang L, Keller C (1994) Z Metallkd 85(6):394

    CAS  Google Scholar 

  2. Ge LL, Liu RP, Li G, Ma MZ, Wang WK (2004) Mater Sci Eng A 385:128

    Google Scholar 

  3. Pierantoni M, Gremaud M, Magnin P, Stoll D, Kurz W (1992) Acta Metall Mater 40(7):1637

    Article  CAS  Google Scholar 

  4. Nikanorov SP, Volkov MP, Gurina VN, Burenkova YuA, Derkachenko LI, Kardashev BK, Regel LL, Wilcox WR (2005) Mater Sci Eng A 390:63

    Article  Google Scholar 

  5. Griffiths WD, Xiao L, McCartney DG (1996) Mater Sci Eng A205:31

    CAS  Google Scholar 

  6. Kanibolotsky DS, Bieloborodova OA, Kotova NV, Lisnyak VV (2002) J Therm Anal Cal 70:975

    Article  Google Scholar 

  7. Bros JP, Eslami H, Gaune P (1981) Ber Bunsenges 85:333

    CAS  Google Scholar 

  8. Körber F, Oelsen W (1937) Mitt Kaiser-Wilhelm Inst Eisenforsch 19:131

    Google Scholar 

  9. N.V. Gizenko, B.I. Emlin, S.N. Kilesso, M.I. Gasik and A.L. Zavyalov (1983) Izv. Akad Nauk SSSR Met. 1:33–35 Engl. Transl

    Google Scholar 

  10. Berthon O, Petot-Ervas G, Petot C, Desré P (1969) C R Acad Sci Paris 268C:1939

    Google Scholar 

  11. Schaefer SC, Gokcen NA (1979) High Temp Sci 11:31

    CAS  Google Scholar 

  12. Bonnet M, Rogez J, Castanet R (1989) Thermochinmica Acta 155:9

    Google Scholar 

  13. Kanibolotsky DS, Bieloborodova OA, Kotova NV, Lisnyak VV (2004) Thermochimica Acta 412:39

    Article  CAS  Google Scholar 

  14. Witusievicz VT, Arpshofen I, Seifert H-J, Aldinger F (2000) J Alloys Compounds 297:176

    Article  Google Scholar 

  15. Gabathuler JP, Steeb S, Lamparter P (1979) Z Naturforsch 34a:1305

    CAS  Google Scholar 

  16. Kéita NM, Steinemann S (1978) J Phys C: Solid State Phys 11:4635

    Article  Google Scholar 

  17. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the calphad method. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Brillo J, Egry I, Westphal J (2008) Int J Mater Res 99(2):162

    Article  CAS  Google Scholar 

  19. Schmitz J, Brillo J, Egry I, Schmidt-Fetzer R (2009) Int J Mater Res 100(11):1529

    Article  CAS  Google Scholar 

  20. Lüdecke C, Lüdecke D (2000) Thermodynamik. Springer, Heidelberg

    Book  Google Scholar 

  21. Porter AW (1920) Trans Faraday Soc 16:336

    Article  Google Scholar 

  22. Feufel H, Gödecke T, Lukas HL, Sommer F (1997) J Alloys Compd 247:31

    Article  CAS  Google Scholar 

  23. Hallstedt B (2007) Calphad 31:292

    Article  CAS  Google Scholar 

  24. Assael MJ, Kakosimos K, Banish RM, Brillo J, Egry I, Brooks R, Quested PN, Mills KC, Nagashima A, Sato Y, Wakeham WA (2006) J Phys Chem Ref Data 35:285

    Article  CAS  Google Scholar 

  25. Brillo J, Egry I (2003) Int J Thermophys 24:1155

    Article  CAS  Google Scholar 

  26. Brillo J, Egry I, Giffard HS, Patti A (2004) Int J Thermophys 25:1881

    Article  CAS  Google Scholar 

  27. Brillo J, Lohöfer G, Schmidt-Hohagen F, Schneider S (2006) Int J Mat Prod Tech 26:247

    CAS  Google Scholar 

  28. Krishnan S, Hansen GP, Hauge RH, Margrave JL (1990) High Temp Sci 29:17

    CAS  Google Scholar 

  29. Brillo J, Egry I, Ho I (2006) Int J Thermophys 27:494

    Article  CAS  Google Scholar 

  30. Watanabe M, Adachi M, Morishita T, Higuchi K, Kobatake H, Fukuyama H (2007) Faraday Discuss 136:279

    Article  CAS  Google Scholar 

  31. Andersson JO, Helander T, Höglund L, Shi P, Sundman B (2002) Calphad 28:273

    Article  Google Scholar 

Download references

Acknowledgement

Within the framework of PAK 461 this study was financially supported by the “Deutsche Forschungsgemeinschaft” under grant numbers EG 93/8-1 and HA 5382/3-1. This is gratefully acknowledged. Further, we would like to thank our cooperation partners Rainer Schmid-Fetzer, Joachim Gröbner, Markus Rettenmayr, and Andrea Löffler for sharing their expertise and for the preparation of high quality samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julianna Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, J., Hallstedt, B., Brillo, J. et al. Density and thermal expansion of liquid Al–Si alloys. J Mater Sci 47, 3706–3712 (2012). https://doi.org/10.1007/s10853-011-6219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6219-8

Keywords

Navigation