Skip to main content
Log in

Reactivity of molten aluminium with polycrystalline ZnO substrate

  • EUROMAT 2009
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure studies of the reaction product region (RPR) obtained due to the interaction between the liquid aluminium and polycrystalline zinc oxide substrate at 1273 K has been studied. The RPR extended over the oxide substrate and showed a typical C4 (co-continuous-ceramic-composites) structure composed of two interpenetrating phases. The scanning electron microscopy studies revealed that the large crystals of alumina were surrounded by an Al(Zn) metallic phase. Moreover, the transmission electron microscopy investigation showed the presence of a thin (~250 nm) layer next to the ZnO. The chemical analysis accompanied by the selected area electron diffraction patterns indicated in both cases the same stoichiometric aluminium oxide but of different crystallographic structure, i.e., large crystals had α-Al2O3 structure while the layer was identified as metastable δ-Al2O3. The results were compared to those reported for interaction between liquid aluminium and monocrystalline ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sobczak N (2005) Solid State Phenom 101–102:221

    Article  Google Scholar 

  2. Sobczak N (2006) In: Gupta N, Hunt WH (eds) Solidification processing of metal matrix composites. TMS Publications, OH, USA, pp 133–146

    Google Scholar 

  3. Breslin MC, Ringnala J, Seeger J, Marasco AL, Daehn GS, Fraser HL (1994) Cer Eng Sci Proc 15(4):104

    Article  CAS  Google Scholar 

  4. Liu W, Koster U (1996) Scripta Mater 35(1):35

    Article  CAS  Google Scholar 

  5. Yoshikawa N, Kikuchi A, Taniguchi S (2002) J Am Cer Soc 85(7):1827

    Article  CAS  Google Scholar 

  6. Gao Y, Jia J, Loechman RE, Ewsuk KG (1995) J Mater Res 10(5):1216

    Article  CAS  ADS  Google Scholar 

  7. Morgiel J, Sobczak N, Pomorska M (2009) In: Sobczak J (ed) Innovations in foundry, Part III (in Polish). Foundry Research Institute, Krakow, Poland, pp 101–108

  8. Sobczak N, Stobierski L, Radziwill W, Ksiazek M, Warmuzek M (2004) Surf Interface Anal 36:1067

    Article  CAS  Google Scholar 

  9. Avraham S, Kaplan WD (2005) J Mater Sci 40:1093. doi:10.1007/s10853-005-6922-4

    Article  CAS  ADS  Google Scholar 

  10. Avraham S, Beyer P, Janssen R, Claussen N, Kaplan WD (2006) J Eur Ceram Soc 26:2719

    Article  CAS  Google Scholar 

  11. Sobczak N, Morgiel J, Kharlamow A, Ksiazek M, Radziwill W, Baliga S (1998) Inzynieria Materialowa 4(105):754

    Google Scholar 

  12. Loehman RE, Ewsuk KG, Tomsia AP (1996) J Am Ceram Soc 79(1):27

    Article  CAS  Google Scholar 

  13. Fahrenholtz WG, Ewsuk KV, Loehman RE, Tomsia AP (1996) Met Mater Trans 27A:2100

    Article  CAS  Google Scholar 

  14. Sobczak N, Oblakowski J, Nowak R, Kudyba A, Radziwill W (2005) J Mater Sci 40:2313. doi:10.1007/s10853-005-1951-6

    Article  CAS  ADS  Google Scholar 

  15. Morgiel J, Major L, Wojewoda-Budka J, Grzonka J, Pomorska M, Sobczak N (2007) In: Sobczak J (ed) Innovations in foundry, Part II (in Polish). Foundry Research Institute, Krakow, Poland, pp 239–246

    Google Scholar 

  16. Barzilai S, Aizenshtein M, Froumin N, Frage N (2006) Mater Sci Eng A 420:291

    Article  CAS  Google Scholar 

  17. Barzilai S, Aizenshtein M, Shapiro-Tsoref E, Froumin N, Frage N (2007) Int J Adhesion Adhesive 27:358

    Article  CAS  Google Scholar 

  18. Sobczak N, Nowak R, Radziwill W, Stobierski L (2008) In: Sobczak J (ed) Innovation in foundry, Part II (in Polish). Foundry Research Institute, Krakow

  19. Wojewoda-Budka J, Sobczak N, Morgiel J (2010) J Microsc 237(3):253. doi:10.1111/j.1365-2818.2009.03237.x

    Article  CAS  PubMed  Google Scholar 

  20. Sobczak N, Kudyba A, Nowak R, Radziwill W, Oblakowski J (2005) Ceramika/Ceramics (Polish Ceramic Bull) 80:661

    Google Scholar 

  21. Wojewoda-Budka J, Sobczak N, Morgiel J, Nowak R (2010) Arch Metall, to be published

  22. Sobczak N, Asthana R, Radziwill W, Nowak R, Kudyba A (2007) Arch Metall Mater 52(1):55

    CAS  Google Scholar 

  23. Sobczak N (2007) In: J. Sobczak (ed) Innovations in foundry (in Polish), Part II. Foundry Research Institute, Krakow, Poland, pp 187–198

  24. Rapp RA, Ezis A, Yurek GJ (1973) Met Trans 4:1283

    Article  CAS  Google Scholar 

  25. Shen P, Fujii H, Matsumoto T, Nogi K (2004) Acta Mater 52:887

    Article  CAS  Google Scholar 

  26. Fujii H, Nakae H (1996) Acta Mater 44(9):3567

    Article  CAS  Google Scholar 

  27. Nowak R, Sobczak N, Kudyba A, Radziwill W, Korpala B (2009) In: Sobczak J (ed) Innovations in foundry, Part III (in Polish). Foundry Research Institute, Krakow, Poland

Download references

Acknowledgement

This work has been supported by the Ministry of Science and Higher Education of Poland within Project No. N N507 272836.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wojewoda-Budka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojewoda-Budka, J., Sobczak, N., Morgiel, J. et al. Reactivity of molten aluminium with polycrystalline ZnO substrate. J Mater Sci 45, 4291–4298 (2010). https://doi.org/10.1007/s10853-010-4379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4379-6

Keywords

Navigation