Skip to main content
Log in

pH within pores in plant fiber cell walls assessed by Fluorescence Ratio Imaging

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The pH within cell wall pores of filter paper fibers and hemp fibers was assessed by Fluorescence Ratio Imaging (FRIM). It was found that the Donnan effect affected the pH measured within the fibers. When the conductivity of the added liquid was low (0.7 mS), pH values were lower within the cell wall than in the bulk solution. This was not the case at high conductivity (22 mS). The occurrence of the Donnan effect allowed the pH values within pores in normal regions of the cell wall to be compared to the pH in regions with misaligned microfibrils (dislocations) when FRIM was carried out in a low conductivity solution. Surprisingly, no pH difference was observed between normal regions and dislocations, suggesting that pore sizes within the two different regions are approximately the same. In another experiment the Donnan effect was shown to have an effect on hydrolysis of hydrothermally pretreated wheat straw only when conducted in a low conductivity solution and only for xylanase, not cellulases. The hydrolysis experiments indicate that under typical conditions where conductivity is high, the Donnan effect does not lower the pH close to the substrate to an extent that affects enzymatic activity during hydrolysis of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

FRIM:

Fluorescence Ratio Imaging

OG:

Oregon Green

ROI:

Region of Interest

References

  • Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F (2011) Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol 45:1107–1113

    Article  CAS  Google Scholar 

  • Ander P, Hildén L, Daniel G (2008) Cleavage of softwood kraft pulp fibers by HCl and cellulases. BioResources 3:477–490

    CAS  Google Scholar 

  • Andreasson B, Wågberg L (2009) On the mechanisms behind the action of wet strength and wet strength agents. In: Ek M, Gellerstedt G, Henriksson G (eds) Pulp and Paper Chemistry and Technology: Paper Products Physics and Technology. de Gruyter, Berlin, pp 185–208

    Google Scholar 

  • Antongiovanni M, Sargentini C (1991) Variability in chemical composition of straws. Options Méditerranéennes—Série Séminaires 16:49–53

    Google Scholar 

  • Breeuwer P, Abee T (2000) Assessment of the intracellular pH of immobilized and continuously perfused yeast cells employing fluorescence ratio imaging analysis. J Microbiol Methods 39:253–264

    Article  CAS  Google Scholar 

  • Bright GR, Fisher GW, Rogowska J, Taylor DL (1987) Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol 104:1019–1033

    Article  CAS  Google Scholar 

  • Bubner P, Dohr J, Plank H, Mayrhofer C, Nidetzky B (2012) Cellulose dig deep: in situ observation of the mesoscopic structural dynamics of enzymatic cellulose degradation. J Biol Chem 287:2759–2765

    Article  CAS  Google Scholar 

  • Buchert J, Tamminen T, Viikari L (1997) Impact of the Donnan effect on the action of xylanases on fiber substrates. J Biotech 57:217–222

    Article  CAS  Google Scholar 

  • Buchert J, Tenkanen M, Tamminen T (2001) Characterization of carboxylic acids during kraft and superbatch pulping. Tappi J 84:1–9

    Google Scholar 

  • Capper BS (1988) Genetic-variation in the feeding value of cereal straw. Anim Feed Sci Technol 21:127–140

    Article  Google Scholar 

  • Covington AK, Whalley PD, Davison W (1985) Recommendations for the determination of pH in low ionic strength fresh waters. Pure Appl Chem 57:877–886

    Article  Google Scholar 

  • Dainty J, Hope AB (1961) The electric double layer and the Donnan equilibrium in relation to plant cell walls. Aust J Biol Sci 14:541–551

    CAS  Google Scholar 

  • Dellian M, Helmlinger G, Yuan F, Jain RK (1996) Fluorescence ratio imaging of interstitial pH in solid tumours: effect of glucose on spatial and temporal gradients. Br J Cancer 74:1206–1215

    Article  CAS  Google Scholar 

  • Donnan FG, Harris AB (1911) The osmotic pressure and conductivity of aqueous solutions of congo red and reversible membrane equilibrium. J Chem Soc 99:1554–1577

    Article  CAS  Google Scholar 

  • Fa K, Tulock JJ, Sweedler JV, Bohn PW (2005) Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels. J Am Chem Soc 127:13928–13933

    Article  CAS  Google Scholar 

  • Fahlén J, Salmén L (2005) Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis. Biomacromolecules 6:433–438

    Article  Google Scholar 

  • Fält S, Wågberg M (2003) Influence of electrolytes on the swelling and strength of kraft-liner pulps. Nordic Pulp Pap J 18:69–73

    Article  Google Scholar 

  • Fornasiero F, Park HG, Holt JK, Stadermann M, Grigoropoulos CP, Noy A, Bakajin O (2008) Ion exclusion by sub-2-nm carbon nanotube pores. PNAS 105:17250–17255

    Google Scholar 

  • Fu Y, Collinson MM, Higgins DA (2004) Single-molecule spectroscopy studies of microenvironmental acidity in silicate thin films. J Am Chem Soc 16:13838–13844

    Article  Google Scholar 

  • Gama FM, Teixeira JA, Mota M (1994) Cellulose morphology and enzymatic reactivity: a modified solute exclusion technique. Biotech Bioeng 43:381–387

    Article  CAS  Google Scholar 

  • Grethlein HE (1985) The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Bio/Technology 3:155–160

    Article  CAS  Google Scholar 

  • Griffin DM (1977) Water potential and wood-decay fungi. Annu Rev Phytopathol 15:319–329

    Article  Google Scholar 

  • Grignon J, Scallan T (1980) Effect of pH and neutral salt upon the swelling of cellulose gels. J Appl Polym Sci 25:2829–2843

    Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Google Scholar 

  • Heinemann M, Limper U, Bűchs J (2004) New insights in the spatially resolved dynamic pH measurement in macroscopic large absorbent particles by confocal laser scanning microscopy. J Chromatogr 1024:45–53

    Article  CAS  Google Scholar 

  • Hidayat BJ, Thygesen LG, Johansen KS, Felby C (2011) Using fluorescence microscopy to probe cell wall ultrastructure and susceptibility to enzyme binding. In: Orlandi M, Crestini C (eds) Italic 6: science &technology of biomasses, proceeding book, pp 121–124, 5–8 Sept 2011, Viterbo, Italy

  • Hidayat BJ, Felby C, Johansen KS, Thygesen LG (2012) Cellulose is not just cellulose: a review of dislocations as reactive sites in the enzymatic hydrolysis of cellulose microfibrils. Cellulose 19:1481–1493

    Article  CAS  Google Scholar 

  • Kempen GMP, van Vliet LJ (2000) Mean and variance of ratio estimator used in fluorescence ratio imaging. Cytometry 39:300–305

    Article  Google Scholar 

  • Kristensen J, Thygesen L, Felby C, Jørgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels. 1:29–32. doi:10.1186/1754-6834-1-5

    Google Scholar 

  • Larsen J, Petersen MØ, Thirup L, Li HW, Iversen FK (2008) The IBUS Process—lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31:765–772

    Google Scholar 

  • Levitz SM, Nong S-H, Seetoo KF, Harrison TS, Speizer RA, Simons ER (1999) Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect Immun 67:885–890

    CAS  Google Scholar 

  • Li C, Ladisch CM, Ladisch MR (2001) Pore characterization of cellulase enzyme treated cotton fabric. Text Res J 71:407–414

    Article  CAS  Google Scholar 

  • Lindedam J, Andersen SB, deMartini J, Bruun J, Jørgensen H, Felby C, Magid J, Yang B, Wyman CE (2012) Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw. Biomass Bioenerg 37:221–228

    Article  CAS  Google Scholar 

  • Moore R, Clark WD (1995) Botany: plant form and function. Wm C Brown Publishers, Dubuque

    Google Scholar 

  • Nielsen LJ, Eyleyb S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931

    Article  CAS  Google Scholar 

  • Nishiyama H, Ohya T, Tanoi K, Nakanishi TM (2008) A simple measurement of the pH of root apoplast by the fluorescence ratio method. Plant Root 2:3–6. doi:10.3117/plantroot.2.3

    Article  CAS  Google Scholar 

  • NurAlam Md, Antal M, Tejado A, van de Ven TGM (2012) Salt-induced acceleration of chemical reactions in cellulose nanopores. Cellulose 19:517–522

    Article  Google Scholar 

  • Posch HE, Leiner MJP, Wolfbeis OS (1989) Toward a gastric pH-sensor: an optrode for the pH 0–7 range. Fresenius Z Anal Chem 334:162–165

    Article  CAS  Google Scholar 

  • Rouvinen J, Bergfors T, Teeri T, Knowles J, Jones A (1990) Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science 249:380–386

    Article  CAS  Google Scholar 

  • Siegumfeldt H, Rechinger KB, Jakobsen M (1999) Use of fluorescence ratio imaging for intracellular pH determination of individual bacterial cells in mixed cultures. Microbiology 145:1703–1709

    Article  CAS  Google Scholar 

  • Sithole B (2005) New method of measuring the pH of wood chips. In: Appita conference, Auckland, New Zealand 16–19 May 2005

  • Søndergaard CR, McIntosh LP, Pollastri G, Nielsen JE (2008) Determination of electrostatic interaction energies and protonation state populations in enzyme active sites. J Mol Biol 376:269–287

    Article  Google Scholar 

  • Sørensen HR, Meyer AS, Pedersen S (2003) Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between alpha-l-arabinofuranosidases, endo-1,4-beta-xylanases, and beta-xylosidase activities. Biotechnol Bioeng 81:726–731

    Article  Google Scholar 

  • Spiess AC, Kasche V (2001) Direct measurement on pH profiles in immobilized enzyme carriers during kinetically controlled synthesis using CLSM. Biotechnol Prog 17:294–303

    Article  CAS  Google Scholar 

  • Sun W-C, Gee KR, Klaubert DH, Haugland RP (1997) Synthesis of fluorinated fluoresceins. J Org Chem 62:6469–6475

    Article  CAS  Google Scholar 

  • Taylor KACC (1995) A modification of the phenol sulfuric acid method of total sugar determination. Appl Biochem Biotechnol 53:207–214

    Article  CAS  Google Scholar 

  • Teleman A, Harjunpää V, Tenkanen M, Buchert J, Hausalo T, Drakenberg T, Vuorinen T (1995) Characterisation of 4-deoxy-β-l-threo-hex-4-enopyranosyluronic acid attached to xylan in pine kraft pulp and pulping liquor by 1H and 13C NMR spectroscopy. Carbohydr Res 272:55–71

    Article  CAS  Google Scholar 

  • Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biot 38:975–983

    Article  CAS  Google Scholar 

  • Tolera A, Tsegaye B, Berg T (2008) Effects of variety, cropping year, location and fertilizer application on nutritive value of durum wheat straw. J Anim Physiol Anim Nutr (Berl) 92:121–130

    Article  CAS  Google Scholar 

  • Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window into intracellular ionic signaling. TIBS 11:450–455

    CAS  Google Scholar 

  • Vlachy V, Haymet ADJ (1990) Salt exclusion from charged and uncharged micropores. J Electroanal Chem 283:77–85

    Article  CAS  Google Scholar 

  • Weimer PJ, Weston WM (1985) Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnol Bioeng 27:1540–1547

    Article  CAS  Google Scholar 

  • Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal Biochem 194:330–344

    Article  CAS  Google Scholar 

  • Wilhelm S (2010) Confocal laser scanning microscopy. Carl Zeis Microimaging GmbH. http://www.zeiss.com/C1256D18002CC306/0/F99A7F3E8944EEE3C1256E5C0045F68B/$file/60-1-0030_confocal-principles.pdf. Accessed 7 Jan 2013

  • Wu N, Hubbe MA, Rojas OJ, Park S (2009) Permeation of polyelectrolytes and other solutes into the pore spaces of water-swollen cellulose: a review. Bioresources 4:1222–1262

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Novozymes a/s, Denmark for funding the project and for providing all enzymes used. The pretreated wheat straw was a gift from Inbicon via Industrial PhD student Mai Østergaard Petersen. Thanks to Bodil Pallesen, Jørgen Heggelund and Peter Urban for providing the hemp fibers used. All imaging work was performed at the Center for Advanced Bioimaging, University of Copenhagen.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Budi J. Hidayat or Lisbeth G. Thygesen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidayat, B.J., Thygesen, L.G. & Johansen, K.S. pH within pores in plant fiber cell walls assessed by Fluorescence Ratio Imaging. Cellulose 20, 1041–1055 (2013). https://doi.org/10.1007/s10570-013-9912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9912-8

Keywords

Navigation