Skip to main content

Advertisement

Log in

Predicting Nocturnal Wind and Temperature Profiles Based on External Forcing Parameters

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We introduce a simple, physically consistent method to predict nocturnal wind and temperature profiles from external forcing parameters such as the geostrophic wind. As an indicator of the radiative ‘forcing’ the net longwave radiative cooling is used as a proxy. Surface fluxes are expressed in terms of these parameters by coupling an Ekman model to a rudimentary surface energy balance. Additionally the model assumes validity of Monin-Obukhov similarity in order to predict near-surface wind and temperature profiles up to a height equal to the Obukhov length. The predictions are validated against an independent dataset that covers 11-years of observations at Cabauw, The Netherlands. It is shown that the characteristic profiles in response to external forcings are well-captured by the conceptual model. For this period the observational climatology is in close agreement with ECMWF re-analysis data. As such, the conceptual model provides an alternative tool to giving a first-order estimate of the nocturnal wind and temperature profile near the surface in cases when advanced numerical or observational infrastructure is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André JC (1983) On the variability of the nocturnal boundary layer depth. J Atmos Sci 40: 2309–2311

    Article  Google Scholar 

  • Baas P, van de Wiel BJH, van den Brink L, Holtslag AAM (2012) Composite hodographs and inertial oscillations in the nocturnal boundary layer. Q J R Meteorol Soc 138: 528–535

    Article  Google Scholar 

  • Beare RJ, Macvean MK, Holtslag AAM, Cuxart J, Esau I, Golaz JC, Jimenez MA, Khairoutdinov M, Kosovic B, Lewellen D, Lund TS, Lundquist JK, Mccabe A, Moene AF, Noh Y, Raasch S, Sullivan P (2006) An intercomparison of large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol 118: 247–272

    Article  Google Scholar 

  • Beyrich F, Leps JP, Mauder M, Bange J, Foken T, Huneke S, Lohse H, Lüdi A, Meijninger WML, Mironov D, Weisensee U, Zittel P (2006) Area-averaged surface fluxes over the litfass region based on eddy-covariance measurements. Boundary-Layer Meteorol 121: 33–65

    Article  Google Scholar 

  • Bosveld FC, Beyrich F (2004) Classifying observations of stable boundary layers for model validation. 16th symposium on boundary layers and turbulence, P4.13. https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CFUQFjAB&url=https%3A%2F%2Fams.confex.com%2Fams%2Fpdfpapers%2F78641.pdf&ei=krsGUOHFBY3ktQb-49m9Bg&usg=AFQjCNGV_BKP7hbfImWXqqKDbVG-JLzpIA&cad=rja

  • Derbyshire H (1990) Nieuwstadts stable boundary layer revisited. Q J R Meteorol Soc 116: 127–158

    Article  Google Scholar 

  • Derbyshire SH (1999) Stable boundary-layer modelling: established approaches and beyond. Boundary-Layer Meteorol 90: 423–446

    Article  Google Scholar 

  • Duynkerke PG (1999) Turbulence, radiation and fog in Dutch stable boundary layers. Boundary-Layer Meteorol 90: 447–477

    Article  Google Scholar 

  • Edwards JM (2009) Radiative processes in stable boundary layer: Part I. Radiative aspects. Boundary-Layer Meteorol 131: 105–126

    Article  Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Holtslag AAM, De Bruin HAR (1987) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27: 689–704

    Article  Google Scholar 

  • Mahrt L (2011) The near-calm stable boundary layers. Boundary-Layer Meteorol 140: 343–360

    Article  Google Scholar 

  • Monin AS, Obhukov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst 24(151): 163–187

    Google Scholar 

  • Monteith JL (1981) Evaporation and surface temperature. Q J R Meteorol Soc 107: 1–27

    Article  Google Scholar 

  • Nieuwstadt FTM, Tennekes H (1981) A rate equation for the nocturnal boundary-layer height. J Atmos Sci 38: 1418–1428

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41: 2202–2216

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2010) Analytical description of a nocturnal low-level jet. Q J R Meteorol Soc 136: 1255–1262

    Google Scholar 

  • Steeneveld GJ, Vande Wiel BJH, Holtslag AAM (2006) Modelling the artic stable boundary layer and its coupling to the surface. Boundary-Layer Meteorol 118: 357–378

    Article  Google Scholar 

  • Steeneveld GJ, Vande Wiel BJH, Holtslag AAM (2006) Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J Atmos Sci 63: 920–935

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp

    Book  Google Scholar 

  • Svensson G, Holtslag AAM, Kumar V, Mauritsen T, Steeneveld GJ, Angevine WM, Bazile E, Beljaars A, de Bruijn EIF, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: The second GABLS experiment. Boundary-Layer Meteorol 140: 177–206

    Article  Google Scholar 

  • Van de Wiel BJH, Ronda RJ, De Bruin HAR, Holtslag AAM (2002) Intermittent turbulence and oscillations in the stable boundary layer over land. Part I: a bulk model. J Atmos Sci 59: 942–958

    Article  Google Scholar 

  • Van de Wiel BJH, Moene AF, Hartogensis OK, De Bruin HAR, Holtslag AAM (2003) Intermittent turbulence in the stable boundary layer over land. Part III: a classification for observations during CASES-99. J Atmos Sci 60: 2509–2522

    Article  Google Scholar 

  • Van de Wiel BJH, Moene AF, Steeneveld GJ, Hartogensis OK, Holtslag AAM (2007) Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul Combust 79: 251–274

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol Soc 96: 67–90

    Article  Google Scholar 

  • Zilitinkevich SS, Esau IN (2005) Resistance and heat-transfer laws for stable and neutral planetary boundary layers: Old theory advances and re-evaluated. Q J R Meteorol Soc 131: 1863–1892

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. M. Donda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donda, J.M.M., Van de Wiel, B.J.H., Bosveld, F.C. et al. Predicting Nocturnal Wind and Temperature Profiles Based on External Forcing Parameters. Boundary-Layer Meteorol 146, 103–117 (2013). https://doi.org/10.1007/s10546-012-9755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-012-9755-0

Keywords

Navigation