Skip to main content
Log in

Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Actinobacillus pleuropneumoniae is an important pathogen that causes respiratory disease in pigs. Trimeric autotransporter adhesin (TAA) is a recently discovered bacterial virulence factor that mediates bacterial adhesion and colonization. Two TAA coding genes have been found in the genome of A. pleuropneumoniae strain 5b L20, but whether they contribute to bacterial pathogenicity is unclear. In this study, we used homologous recombination to construct a double-gene deletion mutant, ΔTAA, in which both TAA coding genes were deleted and used it in in vivo and in vitro studies to confirm that TAAs participate in bacterial auto-aggregation, biofilm formation, cell adhesion and virulence in mice. A microarray analysis was used to determine whether TAAs can regulate other A. pleuropneumoniae genes during interactions with porcine primary alveolar macrophages. The results showed that deletion of both TAA coding genes up-regulated 36 genes, including ene1514, hofB and tbpB2, and simultaneously down-regulated 36 genes, including lgt, murF and ftsY. These data illustrate that TAAs help to maintain full bacterial virulence both directly, through their bioactivity, and indirectly by regulating the bacterial type II and IV secretion systems and regulating the synthesis or secretion of virulence factors. This study not only enhances our understanding of the role of TAAs but also has significance for those studying A. pleuropneumoniae pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Angelini S, Deitermann S, Koch HG (2005) FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep 6:476–481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Asuthkar S, Velineni S, Stadlmann J, Altmann F, Sritharan M (2007) Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai. Infect Immun 75:4582–4591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baltes N, Hennig-Pauka I, Gerlach GF (2002) Both transferrin binding proteins are virulence factors in Actinobacillus pleuropneumoniae serotype 7 infection. FEMS Microbiol Lett 209:283–287

    Article  PubMed  CAS  Google Scholar 

  • Baum EZ, Crespo-Carbone SM, Foleno BD, Simon LD, Guillemont J, Macielag M, Bush K (2009) MurF inhibitors with antibacterial activity: effect on muropeptide levels. Antimicrob Agents Chemother 53:3240–3247

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bernstein HD (2007) Are bacterial ‘autotransporters’ really transporters. Trends Microbiol 15:441–447

    Article  PubMed  CAS  Google Scholar 

  • Bosse JT, Janson H, Sheehan BJ, Beddek AJ, Rycroft AN, Kroll JS, Langford PR (2002) Actinobacillus pleuropneumoniae: pathobiology and pathogenesis of infection. Microbes Infect 4:225–235

    Article  PubMed  CAS  Google Scholar 

  • Buettner FF, Maas A, Gerlach GF (2008) An Actinobacillus pleuropneumoniae arcA deletion mutant is attenuated and deficient in biofilm formation. Vet Microbiol 127:106–115

    Article  PubMed  CAS  Google Scholar 

  • Calmettes C, Alcantara J, Yu RH, Schryvers AB, Moraes TF (2012) The structural basis of transferrin sequestration by transferrin-binding protein B. Nat Struct Mol Biol 19:358–360

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B, Capecchi B, Giuliani MM, Masignani V, Santini L, Savino S, Granoff DM, Caugant DA, Pizza M, Rappuoli R, Mora M (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195:1445–1454

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cotter SE, Surana NK, St GJW 3rd (2005) Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol 13:199–205

    Article  PubMed  CAS  Google Scholar 

  • Eldholm V, Gutt B, Johnsborg O, Bruckner R, Maurer P, Hakenbeck R, Mascher T, Havarstein LS (2010) The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics. J Bacteriol 192:1761–1773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gasiunas G, Sinkunas T, Siksnys V (2014) Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci 71:449–465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Grasteau A, Tremblay YD, Labrie J, Jacques M (2011) Novel genes associated with biofilm formation of Actinobacillus pleuropneumoniae. Vet Microbiol 153:134–143

    Article  PubMed  CAS  Google Scholar 

  • Groicher KH, Firek BA, Fujimoto DF, Bayles KW (2000) The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J Bacteriol 182:1794–1801

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang X, Li Y, Fu Y, Ji Y, Lian K, Zheng H, Wei J, Cai X, Zhu Q (2013) Cross-protective efficacy of recombinant transferrin-binding protein A of Haemophilus parasuis in guinea pigs. Clin Vaccine Immunol 20:912–919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC (2009) Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold ‘em, knowing when to fold ‘em. Trends Microbiol 17:13–21

    Article  PubMed  CAS  Google Scholar 

  • Janssen WJ, Henson PM (2012) Cellular regulation of the inflammatory response. Toxicol Pathol 40:166–173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnson TL, Fong JC, Rule C, Rogers A, Yildiz FH, Sandkvist M (2014) The Type II secretion system delivers matrix proteins for biofilm formation by Vibrio cholerae. J Bacteriol 196:4245–4252

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kapperud G, Namork E, Skurnik M, Nesbakken T (1987) Plasmid-mediated surface fibrillae of Yersinia pseudotuberculosis and Yersinia enterocolitica: relationship to the outer membrane protein YOP1 and possible importance for pathogenesis. Infect Immun 55:2247–2254

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kinsella RL, Scott NE, Feldman MF (2015) Clinical implications of glycoproteomics for Acinetobacter baumannii. Expert Rev Proteomics 12:1–3

    Article  PubMed  CAS  Google Scholar 

  • Kopf M, Schneider C, Nobs SP (2015) The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16:36–44

    Article  PubMed  CAS  Google Scholar 

  • Lees-Miller RG, Iwashkiw JA, Scott NE, Seper A, Vinogradov E, Schild S, Feldman MF (2013) A common pathway for O-linked protein-glycosylation and synthesis of capsule in Acinetobacter baumannii. Mol Microbiol 89:816–830

    Article  PubMed  CAS  Google Scholar 

  • Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VA (2006) Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol 14:264–270

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu YY, Franz B, Truttmann MC, Riess T, Gay-Fraret J, Faustmann M, Kempf VA, Dehio C (2013) Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system. Cell Microbiol 15:759–778

    Article  PubMed  CAS  Google Scholar 

  • Lyskowski A, Leo JC, Goldman A (2011) Structure and biology of trimeric autotransporter adhesins. Adv Exp Med Biol 715:143–158

    Article  PubMed  CAS  Google Scholar 

  • Masi M, Pages JM (2013) Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C—TolC Case. Open Microbiol J 7:22–33

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morton DJ, Seale TW, Bakaletz LO, Jurcisek JA, Smith A, VanWagoner TM, Whitby PW, Stull TL (2009) The heme-binding protein (HbpA) of Haemophilus influenzae as a virulence determinant. Int J Med Microbiol 299:479–488

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mota LJ, Journet L, Sorg I, Agrain C, Cornelis GR (2005) Bacterial injectisomes: needle length does matter. Science 307:1278

    Article  PubMed  Google Scholar 

  • Oswald W, Tonpitak W, Ohrt G, Gerlach G (1999) A single-step transconjugation system for the introduction of unmarked deletions into Actinobacillus pleuropneumoniae serotype 7 using a sucrose sensitivity marker. FEMS Microbiol Lett 179:153–160

    Article  PubMed  CAS  Google Scholar 

  • Palomino C, Mellado RP (2005) The Streptomyces lividans cytoplasmic signal recognition particle receptor FtsY is involved in protein secretion. J Mol Microbiol Biotechnol 9:57–62

    Article  PubMed  CAS  Google Scholar 

  • Piatek R, Zalewska-Piatek B, Dzierzbicka K, Makowiec S, Pilipczuk J, Szemiako K, Cyranka-Czaja A, Wojciechowski M (2013) Pilicides inhibit the FGL chaperone/usher assisted biogenesis of the Dr fimbrial polyadhesin from uropathogenic Escherichia coli. BMC Microbiol 13:131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pizarro-Cerda J, Cossart P (2006) Bacterial adhesion and entry into host cells. Cell 124:715–727

    Article  PubMed  CAS  Google Scholar 

  • Prado AM, Mercedes PM, Allievi MC, Sanchez RC, Ruzal SM (2008) Murein hydrolase activity in the surface layer of Lactobacillus acidophilus ATCC 4356. Appl Environ Microbiol 74:7824–7827

    Article  CAS  Google Scholar 

  • Qin W, Wang L, Lei L (2015) New findings on the function and potential applications of the trimeric autotransporter adhesin. Antonie Van Leeuwenhoek 108:1–14

    Article  PubMed  Google Scholar 

  • Reffuveille F, Serror P, Chevalier S, Budin-Verneuil A, Ladjouzi R, Bernay B, Auffray Y, Rince A (2012) The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence. Microbiology 158:816–825

    Article  PubMed  CAS  Google Scholar 

  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA 104:8113–8118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Richter C, Chang JT, Fineran PC (2012) Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4:2291–2311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rycroft AN, Garside LH (2000) Actinobacillus species and their role in animal disease. Vet J 159:18–36

    Article  PubMed  CAS  Google Scholar 

  • Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–257

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sauvonnet PG, Pugsley AP (2000) PpdD type IV pilin of Escherichia coliK-12 can Be assembled into pili in Pseudomonas aeruginosa. J Bacteriol 182:848–854

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Seluanov A, Bibi E (1997) FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J Biol Chem 272:2053–2055

    Article  PubMed  CAS  Google Scholar 

  • Selvan AT, Sankaran K (2008) Localization and characterization of prolipoprotein diacylglyceryl transferase (Lgt) critical in bacterial lipoprotein biosynthesis. Biochimie 90:1647–1655

    Article  PubMed  CAS  Google Scholar 

  • Sjolinder H, Eriksson J, Maudsdotter L, Aro H, Jonsson AB (2008) Meningococcal outer membrane protein NhhA is essential for colonization and disease by preventing phagocytosis and complement attack. Infect Immun 76:5412–5420

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Snel B, Bork P, Huynen MA (2002) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci USA 99:5890–5895

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sobral RG, Ludovice AM, de Lencastre H, Tomasz A (2006) Role of murF in cell wall biosynthesis: isolation and characterization of a murF conditional mutant of Staphylococcus aureus. J Bacteriol 188:2543–2553

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S (2009) Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem 37:217–222

    Article  PubMed  CAS  Google Scholar 

  • St. George JW III, Cutter D (2000) The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J Bacteriol 182:6005–6013

    Article  Google Scholar 

  • Sundaram S, Banerjee S, Sankaran K (2012) The first nonradioactive fluorescence assay for phosphatidylglycerol:prolipoprotein diacylglyceryl transferase that initiates bacterial lipoprotein biosynthesis. Anal Biochem 423:163–170

    Article  PubMed  CAS  Google Scholar 

  • Szczesny P, Lupas A (2008) Domain annotation of trimeric autotransporter adhesins–daTAA. Bioinformatics 24:1251–1256

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Szczesny P, Linke D, Ursinus A, Bar K, Schwarz H, Riess TM, Kempf VA, Lupas AN, Martin J, Zeth K (2008) Structure of the head of the Bartonella adhesin BadA. PLoS Pathog 4:e1000119

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Terradot L, Bayliss R, Oomen C, Leonard GA, Baron C, Waksman G (2005) Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA 102:4596–4601

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Valle J, Mabbett AN, Ulett GC, Toledo-Arana A, Wecker K, Totsika M, Schembri MA, Ghigo JM, Beloin C (2008) UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol 190:4147–4161

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vergauwen B, Elegheert J, Dansercoer A, Devreese B, Savvides SN (2010) Glutathione import in Haemophilus influenzae Rd is primed by the periplasmic heme-binding protein HbpA. Proc Natl Acad Sci USA 107:13270–13275

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang B, Weng J, Wang W (2014) Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations. Proteins 82:2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Qin W, Ruidong Z, Liu S, Zhang H, Sun C, Feng X, Gu J, Du C, Han W, Langford PR, Lei L (2015a) Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets. Microb Pathog 78:74–86

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Qin W, Yang S, Zhai R, Zhou L, Sun C, Pan F, Ji Q, Wang Y, Gu J, Feng X, Du C, Han W, Langford PR, Lei L (2015b) The Adh adhesin domain is required for trimeric autotransporter Apa1-mediated Actinobacillus pleuropneumoniae adhesion, autoaggregation, biofilm formation and pathogenicity. Vet Microbiol 177:175–183

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Zhou L, Sun C, Feng X, Du C, Gao Y, Ji Q, Yang S, Wang Y, Han W, Langford PR, Lei L (2012) Apa is a trimeric autotransporter adhesin of Actinobacillus pleuropneumoniae responsible for autoagglutination and host cell adherence. J Basic Microbiol 52:598–607

    Article  PubMed  CAS  Google Scholar 

  • Zgurskaya HI, Krishnamoorthy G, Ntreh A, Lu S (2011) Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of Enterobacteria. Front Microbiol 2:189

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130061110089) and from the National Natural Science Foundation of China (No. 31372447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liancheng Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Wanhai Qin and Lei Wang are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Wang, L., Zhai, R. et al. Trimeric autotransporter adhesins contribute to Actinobacillus pleuropneumoniae pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. Antonie van Leeuwenhoek 109, 51–70 (2016). https://doi.org/10.1007/s10482-015-0609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0609-x

Keywords

Navigation