Skip to main content

Advertisement

Log in

The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations

  • Special Issue (UTCI)
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In this study we examine the determination accuracy of both the mean radiant temperature (Tmrt) and the Universal Thermal Climate Index (UTCI) within the scope of numerical weather prediction (NWP), and global (GCM) and regional (RCM) climate model simulations. First, Tmrt is determined and the so-called UTCI-Fiala model is then used for the calculation of UTCI. Taking into account the uncertainties of NWP model (among others the HIgh Resolution Limited Area Model HIRLAM) output (temperature, downwelling short-wave and long-wave radiation) stated in the literature, we simulate and discuss the uncertainties of Tmrt and UTCI at three stations in different climatic regions of Europe. The results show that highest negative (positive) differences to reference cases (under assumed clear-sky conditions) of up to −21°C (9°C) for Tmrt and up to −6°C (3.5°C) for UTCI occur in summer (winter) due to cloudiness. In a second step, the uncertainties of RCM simulations are analyzed: three RCMs, namely ALADIN (Aire Limitée Adaptation dynamique Développement InterNational), RegCM (REGional Climate Model) and REMO (REgional MOdel) are nested into GCMs and used for the prediction of temperature and radiation fluxes in order to estimate Tmrt and UTCI. The inter-comparison of RCM output for the three selected locations shows that biases between 0.0 and ±17.7°C (between 0.0 and ±13.3°C) for Tmrt (UTCI), and RMSE between ±0.5 and ±17.8°C (between ±0.8 and ±13.4°C) for Tmrt (UTCI) may be expected. In general the study shows that uncertainties of UTCI, due to uncertainties arising from calculations of radiation fluxes (based on NWP models) required for the prediction of Tmrt, are well below ±2°C for clear-sky cases. However, significant higher uncertainties in UTCI of up to ±6°C are found, especially when prediction of cloudiness is wrong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blazejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2011) Comparison of UTCI to selected thermal indices. Int J Biometeorol Special Issue (UTCI). doi:10.1007/s00484-011-0453-2

  • Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2011a) Deriving the Operational Procedure for the Universal Thermal Climate Index UTCI. Int J Biometeorol Special Issue (UTCI). doi:10.1007/s00484-011-0454-1

  • Bröde P, Krüger EL, Rossi FA, Fiala D (2011b) Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil. Int J Biometeorol Special Issue (UTCI). doi:10.1007/s00484-011-0452-3

  • Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. Eos 83:147

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Dyn 81:7–30

    Google Scholar 

  • Confalonieri U, Menne B, Akhtar R, Ebi KL, Hauengue M, Kovats RS, Revich B, Woodward A (2007) Human health. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 391–431

    Google Scholar 

  • Coppola E, Giorgi F, Rauscher FA, Piani C (2010) Model weighting based on mesoscale structures in precipitation and temperature in an ensemble of regional climate models. Clim Res 44:121–134

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE-IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Donat MG, Leckebusch GC, Wild S, Ulbrich U (2010) Benefits and limitations of regional multi-model ensembles for storm loss estimations. Clim Res 44:211–225

    Article  Google Scholar 

  • Eerola K (2008) Simo Järvenoja’s inheritance: Long term verification of HIRLAM forecasts at the Finnish Meteorological Institute. HIRLAM Newsl 54:119–128

    Google Scholar 

  • Fanger PO (1973) Thermal comfort—analysis and applications in environmental engineering. McGraw-Hill, New York, pp 28–30

    Google Scholar 

  • Farda A, Déqué M, Somot S, Horányi A, Spiridonov V, Tóth H (2010) Model ALADIN as regional climate model for central and eastern Europe. Stud Geophys Geod 54:313–332

    Article  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2011) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol, Special Issue (UTCI). doi:10.1007/s00484-011-0424-7

  • Fiori E, Parodi A, Siccardi F (2009) Dealing with uncertainty: turbulent parameterizations and grid spacing effects in numerical modelling of deep moist convective processes. Nat Hazards Earth Syst Sci 9:1871–1880

    Article  Google Scholar 

  • Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33(7–8):917–935

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model(RegCM2). Part I. Boundary-layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, De Canio G (1993b) Development of a second generation regional climate model(Reg-CM2). Part II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352

    Article  Google Scholar 

  • Halthore RN, Crisp D, Schwartz SE, Anderson GP, Berk A, Bonnel B, Boucher O, Chang FL, Chou MD, Clothiaux EE, Dubuisson P, Fomin B, Fouquart Y, Freidenreich S, Gautier C, Kato S, Laszlo I, Li Z, Mather JH, Plana-Fattori A, Ramaswamy V, Ricchiazzi P, Shiren Y, Trishchenko A, Wiscombe W (2005) Intercomparison of shortwave radiative transfer codes and measurements. J Geophys Res 110:D11206. doi:1029/2004JD005293

  • Havenith G, Fiala D, Błazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Benshabat Y, Jendritzky G (2011) The UTCI-clothing model. Int J Biometeorol, Special Issue (UTCI). doi:10.1007/s00484-011-0451-4

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK

  • Hogan RJ, O’Connor EJ, Illingworth AJ (2009) Verification of cloud-fraction forecasts. Q J R Meteorol Soc 135:1494–1511

    Article  Google Scholar 

  • Hulme M, Conway D, Jones PD, Barrow EM, Jiang T, Turney C (1995) A 1961–90 climatology for Europe for climate change modelling and impacts applications. Int J Climatol 15:1333–1363

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63:119–129

    Article  Google Scholar 

  • Jacob D, Van den Hurk BJJM, Andræ U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Köpken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass BH, Smith RNB, Yang X (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez ES, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81(1):31–52

    Article  Google Scholar 

  • Jendritzky G, Maarouf A, Fiala D, Staiger H (2002) An update on the Development of a Universal Thermal Climate Index. 15th Conf Biometeorol Aerobiol and 16th ICB02, 27 October–1 November 2002. AMS, Kansas, pp 129–133

    Google Scholar 

  • Jendritzky G, Havenith G, Weihs P, Batchvarova E, De Dear RJ (2007) The universal thermal climate index UTCI goal and state of COST action 730. In: Mekjavic IB, Kounalakis SN, Taylor NAS (eds) Environmental ergonomics XII. Biomed, Ljubljana, pp 509–512

    Google Scholar 

  • Kampmann B, Bröde P, Fiala D (2011) Physiological responses to temperature and humidity compared to the assessment by UTCI, WGBT and PHS. Int J Biometeorol, Special Issue (UTCI). doi:10.1007/s00484-011-0410-0

  • Kjellström E, Giorgi F (2010) Introduction. Clim Res 44:117–119

    Article  Google Scholar 

  • Kjellström E, Boberg F, Castro M, Christensen JH, Nikulin G, Sánchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44:135–150

    Article  Google Scholar 

  • Lenderink G, van Ulden A, van den Hurk B, van Meijgaard E (2007) Summertime interannual temperature variability in an ensemble of regional model simulations: analysis of surface energy budget. Clim Change 81:233–247

    Article  Google Scholar 

  • McMichael A, Githeko A, Akhtar R, Carcavallo R, Gubler DJ, Haines A, Kovats RS, Martens P, Patz J, Sasaki A, Ebi K, Focks D, Kalkstein LS, Lindgren E, Lindsay LR, Sturrock R (2001) Human population health. Climate change 2001: impacts, adaptation, and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 453–485

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Nurmi P, Brockmann M (2007) Poster on 7th EMS Annual Meeting / 8th ECAM

  • Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp 184–238

  • Psikuta A, Fiala D, Lascheschwski G, Jendritzky G, Richards M, Błażejczyk K, Mekjavic IB, Rintamäki H, De Dear RJ, Havenith G (2011) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol, Special Issue (UTCI). doi:10.1007/s00484-011-0450-5

  • Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Ritter B, Geleyn JF (1992) A comprehensive radiation sheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325

    Article  Google Scholar 

  • Rockel B, Woth K (2007) Extremes of near-surface wind speed over Europe and their future changes as estimated from an ensemble of RCM simulations. Clim Change 81:267–280

    Article  Google Scholar 

  • Rodriguez E, Navascuès B, Ayuso JJ, Järvenoja S (2003) Analysis of surface variables and parameterization of surface processes in HIRLAM. Part I: approach and verification by parallel runs. Technical report, HIRLAM, 52 pp. Available at http://hirlam.knmi.nl

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Giorgetta MEM, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. MPI Report 218, p 90, Max-Planck-Insitut für Meteorologie

  • Savijärvi H (1990) Fast radiation parameterization schemes for mesoscale and short-range forecast models. J Appl Meteorol 29:437–447

    Article  Google Scholar 

  • Stern DI (2005) Global sulfur emissions from 1850 to 2000. Chemosphere 58:163–175

    Article  CAS  Google Scholar 

  • VDI (1994) VDI guideline 3789 / part 2, Environmental Meteorology, Interactions between Atmosphere and Surfaces. Calculation of Short- and Long-wave Radiation. VDI-Handbuch, Reinhaltung der Luft Band 1, Beuth, Berlin

  • Weihs P, Staiger H, Tinz B, Batchvarova E, Rieder H, Vuilleumier L, Maturilli M, Jendritzky G (2011) The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol, Special Issue (UTCI). doi:10.1007/s00484-011-0416-7

Download references

Acknowledgments

This work was performed within European Union’s COST action 730 “Towards a Universal Thermal Climate Index UTCI for Assessing the Thermal Environment of the Human Being”, while S.F.S. was working temporarily at the Institute of Meteorology (University of Natural Resources and Life sciences, Vienna). This work has been supported by the European Research Council under the European Community's 7th Framework Programme (FP7/2007-2013)/ERC grant agreement number 227915, project PBL-PMES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan F. Schreier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreier, S.F., Suomi, I., Bröde, P. et al. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from numerical weather prediction and regional climate model simulations. Int J Biometeorol 57, 207–223 (2013). https://doi.org/10.1007/s00484-012-0525-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-012-0525-y

Keywords

Navigation