Skip to main content
Log in

Dynamic atmospheric mechanisms associated with the diurnal cycle of hydrometeors and precipitation in the Andes–Amazon transition zone of central Peru during the summer season

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The diurnal cycle of total hydrometeor availability and its associated patterns of atmospheric circulation is studied over a connected Andes–Amazon (A–A) system in the central region of Peru during the summer season. Surface precipitation depends on the amount of hydrometeors that occur in the atmosphere and its atmospheric dynamics. Hydrometeors and the precipitation efficiency index were estimated using radar of the core satellite of the GPM system (N-GPM) for the period 2014–2022. The atmospheric dynamics were analyzed using the regional Weather Research and Forecasting (WRF) model. According to the results, the Andes mountain range produces precipitation at a surface level more efficiently during the afternoon and early evening hours (12–19 LT) due to the convergence of the thermal mesoscale circulations transporting moisture fluxes from the east and west. Both generate convective multicells along the Andes mountain range. The circulation from the west intensifies during the day, causing the displacement of the chain of convective multicells towards the east and producing hydrometeors and intense precipitations in the inter-Andean valleys. The A–A transition zone is more efficient in producing precipitation during the early hours of the day (00–07 LT) due to an increase in the northern circulation associated with the low-level jets and a change in the magnitude of the horizontal winds. Northerly winds enter the A–A transition zone with increased intensity and leave with reduced intensity. This mechanism is driven by the effect of the topographical barrier and the masses of cold air located in high areas on the eastern flank of the Andes. These factors generate significant updrafts and, therefore, the formation of storm clouds with high concentrations of hydrometeors and precipitation on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  • Aybar C, Fernández C, Huerta A, Lavado W, Vega F and Felipe-Obando O 2020 Construction of a high-resolution gridded rainfall dataset for peru from 1981 to the present day; Hydrol. Sci. J. 65(5) 770–785.

    Article  Google Scholar 

  • Barros A P and Arulraj M 2020 Remote sensing of orographic precipitation; In: Satellite Precipitation Measurement 2 559–582, https://doi.org/10.1007/978-3-030-35798-6_6.

  • Castillo-Velarde D, Kumar S, Valdivia-Prado J M, Moya-Álvarez A S, Flores-Rojas J L, Villalobos-Puma E, Martínez-Castro D and Silva-Vidal Y et al. 2021 Evaluation of GPM dual-frequency precipitation radar algorithms to estimate drop size distribution parameters, using ground-based measurement over the central Andes of Peru; Earth Syst. Environ. 5(3) 597–619, https://doi.org/10.1007/s41748-021-00242-5.

    Article  Google Scholar 

  • Chávez S and Takahashi K 2017 Orographic rainfall hot spots in the Andes–Amazon transition according to the TRMMM precipitation radar and in situ data; J. Geophys. Res. Atmos. 122, https://doi.org/10.1002/2016JDO26282.

    Article  Google Scholar 

  • Condom T, Martínez R, Pabón J D, Costa F, Pineda L, Nieto J J, López F and Villacis M 2020 Climatological and hydrological observations for the South American Andes: In situ stations, satellite, and reanalysis data sets; Front. Earth Sci. 8 92, https://doi.org/10.3389/feart.2020.00092.

    Article  Google Scholar 

  • Espinoza J, Chavez S, Ronchail J, Junquas C, Takahashi K and Lavado W 2015 Rainfall hotspots over the southern tropical Andes: Spatial distribution, rainfall intensity and relations with large-scale atmospheric circulation; Water Resour. Res. 51 1–17, https://doi.org/10.1002/2014WR016273.

    Article  Google Scholar 

  • Flores-Rojas J L, Moya-Álvarez A S, Valdivia-Prado J M, Piñas-Laura M, Kumar S, Karam H A, Villalobos-Puma E, Martínez-Castro D and Silva Y 2021 On the dynamic mechanisms of intense rainfall events in the central Andes of Peru, Mantaro valley; Atmos. Res. 248 105188, https://doi.org/10.1016/j.atmosres.2020.105188.

    Article  Google Scholar 

  • Giovannettone J P and Barros A P 2009 Probing regional orographic controls of precipitation and cloudiness in the central Andes using satellite data; J. Hydrometeorol. 10(1) 167–182, https://doi.org/10.1175/2008JHM973.1.

    Article  Google Scholar 

  • Henao J J, Mejia J F and McDonough F 2023 Impacts of anthropogenic aerosols on orographic precipitation in Arizona; Urban Clim. 49 101561.

    Article  Google Scholar 

  • Hou A Y, Kakar R K, Neeck S, Azarbarzin A A, Kummerow C D, Kojima M, Oki R, Nakamura K and Iguchi T 2014 The global precipitation measurement mission; Bull. Am. Meteorol. Soc. 95(5) 701–722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    Article  Google Scholar 

  • Huang H and Chen F 2019 Precipitation microphysics of tropical cyclones over the western north pacific based on GPM DPR observations: A preliminary analysis; J. Geophys. Res.: Atmos. 124(6) 3124–3142, https://doi.org/10.1029/2018JD029454.

    Article  Google Scholar 

  • Junquas C, Takahashi K, Condom T, Espinoza J, Chavez S, Sicart J and Lebel T 2018 Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the central Andes; Clim. Dyn. 50 3995–4017, https://doi.org/10.1007/s00382-017-3858-8.

    Article  Google Scholar 

  • Kumar S, Vidal Y S, Moya-Álvarez A S and Martínez-Castro D 2019 Effect of the surface wind flow and topography on precipitating cloud systems over the Andes and associated amazon basin: GPM observations; Atmos. Res. 225 193–208, https://doi.org/10.1016/j.atmosres.2019.03.027.

    Article  Google Scholar 

  • Liao L and Meneghini R 2022 GPM DPR retrievals: Algorithm, evaluation, and validation; Remote Sens. 14(4) 843, https://doi.org/10.3390/rs14040843.

    Article  Google Scholar 

  • Martínez-Castro D, Kumar S, Flores-Rojas J L, Moya-Álvarez A, Valdivia-Prado J M, Villalobos-Puma E, Castillo-Velarde C D and Silva-Vidal Y 2019 The impact of microphysics parameterization in the simulation of two convective rainfall events over the central Andes of Peru using WRF-ARW; Atmosphere 10(8) 442, https://doi.org/10.3390/atmos10080442.

    Article  Google Scholar 

  • Masrour P F and Rezazadeh M 2023 Aerosol-cloud-precipitation interaction during some convective events over southwestern Iran using the WRF model; Atmos. Pollut. Res. 14(2) 101667.

    Article  Google Scholar 

  • Moya-Álvarez A, Martínez-Castro D, Flores-Rojas J and Silva-Vidal Y 2018 Sensitivity study on the influence of parameterization schemes in WRF-ARW model on short- and medium-range precipitation forecasts in the central Andes of Peru; Adv. Meteorol. 2018 1381092, https://doi.org/10.1155/2018/1381092.

    Article  Google Scholar 

  • Moya-Álvarez A, Martínez-Castro D, Kumar S and Silva Y 2019 Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography; Theor. Appl. Climatol. 137 2993, https://doi.org/10.1007/s00704-019-02782-3.

    Article  Google Scholar 

  • Moya-Álvarez A, Martínez-Castro D, Kumar S, Flores-Rojas J, Estevan R, Saavedra-Huanca M and Silva Y 2020 Statistical characterization of vertical meteorological profiles obtained with the WRF-ARW model on the central Andes of Peru and its relationship with the occurrence of precipitation on the region; Atmos. Res. 239 104915, https://doi.org/10.1016/j.atmosres.2020.104915.

    Article  Google Scholar 

  • Moya-Álvarez A S, Estevan R, Martínez-Castro D and Silva Y 2023 Spatial and temporal distribution of black carbon in Peru from the analysis of biomass burning sources and the use of numerical models; Earth Syst. Environ. 7 411–430.

    Article  Google Scholar 

  • Myers N, Mittermeier R A, Mittermeier C G, da Fonseca G A and Kent J 2000 Biodiversity hotspots for conservation priorities; Nature 403(6772) 853–858, https://doi.org/10.1038/35002501.

    Article  CAS  Google Scholar 

  • Rosales A G, Junquas C, da Rocha R P, Condom T and Espinoza J C 2022 Valley–mountain circulation associated with the diurnal cycle of precipitation in the tropical Andes (Santa river basin, Peru); Atmosphere 13(2) 344, https://doi.org/10.3390/atmos13020344.

  • Ruiz-Hernández J C, Condom T, Ribstein P, Le Moine N, Espinoza J C, Junquas C, Villacís M, Vera A, Muñoz T, Maisincho L et al. 2021 Spatial variability of diurnal to seasonal cycles of precipitation from a high altitude equatorial Andean valley to the Amazon basin; J. Hydrol.: Reg. Stud. 38 100924, https://doi.org/10.1016/j.ejrh.2021.100924.

  • Satyamurty P, da Costa C P W and Manzi A O 2013 Moisture source for the Amazon basin: A study of contrasting years; Theor. Appl. Climatol. 111(1) 195–209, https://doi.org/10.1007/s00704-012-0637-7.

    Article  Google Scholar 

  • Segura H, Espinoza J C, Junquas C, Lebel T, Vuille M and Garreaud R 2020 Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon; Clim. Dyn. 54(5) 2613–2631, https://doi.org/10.1007/s00382-020-05132-6.

    Article  Google Scholar 

  • Seto S, Iguchi T and Oki T 2013 The basic performance of a precipitation retrieval algorithm for the global precipitation measurement mission’s single/dual-frequency radar measurements; IEEE Trans. Geosci. Remote Sens. 51(12) 5239–5251, https://doi.org/10.1109/TGRS.2012.2231686.

    Article  Google Scholar 

  • Sierra J P, Junquas C, Espinoza J C, Segura H, Condom T, Andrade M, Molina-Carpio J, Ticona L, Mardoñez V and Blacutt L et al. 2022 Deforestation impacts on Amazon-Andes hydroclimatic connectivity; Clim. Dyn. 58(9) 2609–2636, https://doi.org/10.21203/rs.3.rs-600041/v1.

    Article  Google Scholar 

  • Skamarock W C, Klemp J B, Dudhia J, Gill D O, Liu Z, Berner J, Wang W, Powers J G, Duda M G, Barke D M et al. 2019 A description of the advanced research WRF model; version 4, National Center for Atmospheric Research: Boulder, CO, USA, 145, https://doi.org/10.5065/1dfh-6p97.

  • Sui C H, Satoh M and Suzuki K 2020 Precipitation efficiency and its role in cloud-radiative feedbacks to climate variability; J. Meteorol. Soc. Jpn. Ser. II, https://doi.org/10.2151/jmsj.2020-024.

  • Trachte K, Seidel J, Figueroa R, Otto M and Bendix J 2018 Cross-scale precipitation variability in a semiarid catchment area on the western slopes of the central Andes; J. Appl. Meteorol. Climatol. 57(3) 675–694, https://doi.org/10.1175/JAMC-D-17-0207.1.

    Article  Google Scholar 

  • Valdivia J M, Gatlin P N, Kumar S, Scipión D, Silva Y and Petersen W A 2022 The GPM-DPR blind zone effect on satellite-based radar estimation of precipitation over the Andes from a ground-based ka-band profiler perspective; J. Appl. Meteorol. Climatol. 61(4) 441–456, https://doi.org/10.1175/JAMC-D-20-0211.1.

    Article  Google Scholar 

  • Villalobos E E, Martinez-Castro D, Kumar S, Silva Y and Fashe O 2019 Estudio de tormentas convectivas sobre los Andes centrales del Perú usando los radares PR-TRMM y KuPR-GPM; Rev. Cuba. Meteorol. 25(1) 59–75, http://rcm.insmet.cu/index.php/rcm/article/view/454.

  • Villalobos-Puma E, Martinez-Castro D, Flores-Rojas J, Saavedra M and Silva Vidal Y 2020 Diurnal cycle of raindrops size distribution in a valley of the Peruvian central Andes; Atmosphere 11, https://doi.org/10.3390/atmos11010038.

  • Zhao Y, Chen D, Li J, Chen D, Chang Y, Li J and Qin R 2020 Enhancement of the summer extreme precipitation over North China by interactions between moisture convergence and topographic settings; Clim. Dyn. 54(5) 2713–2730, https://doi.org/10.1007/s00382-020-05139-z.

    Article  Google Scholar 

Download references

Acknowledgements

Simulation of the WRF model was done using computational resources from the Manati of Instituto de Investigación de la Amazonía Peruana (IIAP). Thanks to National Service of Meteorology and Hydrology of Peru (SENAMHI) for the rain gauge precipitation data. Thanks to the TAMYA project: ‘Impactos de la precipitación, registrados con un radar meteorológico, en los cuerpos glaciares Andinos: nevado Huaytapallana’ for the support with contract No. 082-2021-FONDECYT. This work is a part of the author’s PhD thesis titled ‘Procesos físicos que controlan la precipitación orográfica en los Andes tropicales de Perú’, doctoral program in water resources of University Nacional Agraria La Molina.

Author information

Authors and Affiliations

Authors

Contributions

EVP: Conceptualization, methodology, software, writing – original draft preparation. AM: Investigation, writing – reviewing and editing. DMC: Validation, investigation, conceptualization. JV: Methodology, investigation, data curation. RCV: Investigation, validation, conceptualization. WLC: Investigation, validation. AS: Investigation, validation, software.

Corresponding author

Correspondence to Elver Villalobos-Puma.

Additional information

Communicated by Parthasarathi Mukhopadhyay

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalobos-Puma, E., Morales, A., Martinez-Castro, D. et al. Dynamic atmospheric mechanisms associated with the diurnal cycle of hydrometeors and precipitation in the Andes–Amazon transition zone of central Peru during the summer season. J Earth Syst Sci 133, 75 (2024). https://doi.org/10.1007/s12040-024-02278-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-024-02278-3

Keywords

Navigation