Skip to main content
Log in

Polyelectrolyte microgels based on poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The influence of the charge density of microgels on the binding of oppositely charged polyelectrolytes was investigated. The charge density in the microgels was varied via the amounts of charged comonomer (as e.g., methacrylic acid) during microgel synthesis and also by changing the reaction conditions in order to influence the distribution of the charged comonomer inside the poly-N-isopropylacrylamide-co-methacrylic acid microgel. The variation in charge density was monitored by taking advantage of the polyelectrolyte effect during acid–base titration. Data of titrations of several microgels were analyzed by a modified Henderson–Hasselbalch equation to monitor the influence of the charge density. The microgels contain either different amounts of cross-linker but same amounts of charged comonomer or the microgels were synthesized with same amounts of cross-linker but different functional monomers with different reactivities yielding different spatial distributions. Charge density and spatial distribution of charges in the microgel strongly influence swelling and interaction with polyelectrolytes. As expected, a highly charged microgel binds more polyelectrolyte than a microgel with low amount of charged groups. The amount, however, does not only scale with the number of charges per microgel but also with the charge density of the microgel. The lower the charge density of the microgel, the more polyelectrolyte per negative charge can bind. In addition, the charge density determines whether and at which composition charge reversal of the microgel–polyelectrolyte complexes occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cohen Stuart MA (2008) Colloid Polym Sci 286:855

    Article  CAS  Google Scholar 

  2. Dautzenberg H, Jaeger W, Koetz J, Philipp B, Seidel C, Stscherbina D (1984) Polyelectrolytes. Carl Hanser Verlag, München

    Google Scholar 

  3. Phillip B, Hong LT, Dawydoff W, Linow KJ (1981) Z Anorg Allg Chem 497:219

    Article  Google Scholar 

  4. Koetz J, Koepke H, Schmidt-Naake G, Zarras P, Vogl O (1996) Polymer 37:2775

    Article  CAS  Google Scholar 

  5. Buchhammer HM, Petzold G, Lunkwitz K (1999) Langmuir 15:4306

    Article  CAS  Google Scholar 

  6. Dautzenberg H, Linow KJ, Philipp B (1981) Acta Polym 33:619

    Article  Google Scholar 

  7. Kabanov VA, Zezin AB (1984) Pure Appl Chem 56:343

    Article  CAS  Google Scholar 

  8. Shovsky A, Varga I, Makuska R, Claesson PM (2009) Langmuir 25:6113

    Article  CAS  Google Scholar 

  9. Dautzenberg H, Gao Y, Hahn M (2000) Langmuir 16:9070

    Article  CAS  Google Scholar 

  10. Kabanov AV, Bronich T, Kabanov VA, Yu K, Eisenberg A (1996) Macromolecules 29:6797

    Article  CAS  Google Scholar 

  11. Harada A, Kataoka K (1995) Macromolecules 28:5294

    Article  CAS  Google Scholar 

  12. van de Burgh S, de Keizer A, Cohen Stuart M (2004) Langmuir 20:1073

    Article  Google Scholar 

  13. Pergushov D, Remizova E, Feldthusen J, Zezin A, Müller A, Kabanov V (2003) J Phys Chem B 107:8093

    Article  CAS  Google Scholar 

  14. Gohy J, Varshney S, Antoun S, Jerome R (2000) Macromolecules 33:9298

    Article  CAS  Google Scholar 

  15. Berret JF (2009) Colloid Polym Sci 287:801

    Article  CAS  Google Scholar 

  16. Nisha CK, Manorama V, Kizhakkedathu JN, Maiti S (2004) Langmuir 20:8468

    Article  CAS  Google Scholar 

  17. Bronich TK, Cherry T, Vinogradov SV, Eisenberg A, Kabanov VA, Kabanov AV (1998) Langmuir 14:6101

    Article  CAS  Google Scholar 

  18. Solomatin SV, Bronich TK, Bargar TW, Eisenberg A, Kabanov VA, Kabanov AV (2003) Langmuir 19:8069

    Article  CAS  Google Scholar 

  19. Killmann E, Bauer D, Fuchs A, Portenlaenger O, Rehmet R, Rustemeier O (1998) Prog Colloid & Polym Sci 111:135

    Article  CAS  Google Scholar 

  20. Gillies G, Lin W, Borkovec M (2007) J Phys Chem B 111:8626

    Article  CAS  Google Scholar 

  21. Shubin V, Samoshina Y, Menshikova A, Evseeva T (1997) Colloid Polym Sci 275:655

    Article  CAS  Google Scholar 

  22. Kleimann J, Gehin-Delval C, Auweter H, Borkovec M (2005) Langmuir 21:3688

    Article  CAS  Google Scholar 

  23. Bauer D, Buchhammer H, Fuchs A, Jaeger W, Killmann E, Lunkwitz K, Rehmet R, Schwarz S (1999) Colloids Surf A 156:291

    Article  CAS  Google Scholar 

  24. Cakara D (2004) Charging behavior of polyamines in solution and on surfaces: A potentiometric titration study. Dissertation, University of Geneva

  25. Win JW, Hearn J, Ho CC, Ottewill RH (1974) Colloid Polym Sci 252:464

    Article  Google Scholar 

  26. Nayak S, Lyon LA (2005) Angew Chem 117:7862

    Article  Google Scholar 

  27. Lally S, Bird R, Freemont TJ, Saunders BR (2009) Colloid Polym Sci 287:335

    Article  CAS  Google Scholar 

  28. Berndt I, Pederson JS, Richtering W (2006) Angew Chem Int Ed 45:1737

    Article  CAS  Google Scholar 

  29. Keerl M, Pedersen JS, Richtering W (2009) J Am Chem Soc 131:3093

    Article  CAS  Google Scholar 

  30. Meng ZY, Smith MH, Lyon LA (2009) Colloid Polym Sci 287:277

    Article  CAS  Google Scholar 

  31. Ho KM, Li WY, Wong CH, Li P (2010) Colloid Polym Sci 288:1503

    Article  CAS  Google Scholar 

  32. Das M, Kumacheva E (2006) Colloid Polym Sci 284:1073

    Article  CAS  Google Scholar 

  33. Das M, Sanson N, Kumacheva E (2008) Chem Mater 20:7157

    Article  CAS  Google Scholar 

  34. Schachschal S, Balaceanu A, Melian C, Demco DC, Eckert T, Richtering W, Pich A (2010) Macromolecules 43:4331

    Article  CAS  Google Scholar 

  35. Bradley M, Vincent B, Burnett G (2009) Colloid Polym Sci 287:345

    Article  CAS  Google Scholar 

  36. Kokufuta E, Zhang YQ, Tanaka T, Mamada A (1993) Macromolecules 26:1053

    Article  CAS  Google Scholar 

  37. Greinert N, Richtering W (2004) Colloid Polym Sci 282:1146

    Article  CAS  Google Scholar 

  38. Kleinen J, Richtering W (2008) Macromolecules 41:1785

    Article  CAS  Google Scholar 

  39. Kleinen J, Klee A, Richtering W (2010) Langmuir 26:11258

    Article  CAS  Google Scholar 

  40. Hoare T, McLean D (2006) J Phys Chem B 110:20327

    Article  CAS  Google Scholar 

  41. Hoare T, Pelton R (2006) J Colloid Interface Sci 303:109

    Article  CAS  Google Scholar 

  42. Hoare T, Pelton R (2004) Langmuir 20:2123

    Article  CAS  Google Scholar 

  43. Kabanov VA, Topchiev DA, Karaputadze TM, Mkrtchian LA (1975) Eur Polym J 11:153

    Article  CAS  Google Scholar 

  44. Brugger B, Richtering W (2008) Langmuir 24:7769

    Article  CAS  Google Scholar 

  45. Blackburn WH, Lyon LA (2008) Colloid Polym Sci 286:563

    Article  CAS  Google Scholar 

  46. Katchalsky A, Spitnik P (1947) J Polym Sci 2:432

    Article  CAS  Google Scholar 

  47. Fujii N, Fujimoto K, Michinobu T, Akada M, Hill JP, Shiratori S, Ariga K, Shigehara K (2010) Macromolecules 43:3947

    Article  CAS  Google Scholar 

  48. Osada Y, Abe K, Tsuchida E (1973) J Polym Soc Jpn 11:2219

    Google Scholar 

  49. Seno M, Lin ML, Iwamoto K (1991) Colloid Polym Sci 269:873

    Article  CAS  Google Scholar 

  50. Kabanov AV, Vinogradov SV (2009) Angew Chem Int Ed 48:5418

    Article  CAS  Google Scholar 

  51. Wong J, Diez-Pascual A, Richtering W (2009) Macromolecules 42:1229

    Article  CAS  Google Scholar 

  52. Möhwald H (2010) Colloid Polym Sci 288:123

    Article  Google Scholar 

  53. Ohshima H (2007) Colloid Polym Sci 285:1411

    Article  CAS  Google Scholar 

  54. Terayama HJ (1952) Polym Sci 8:243

    Article  CAS  Google Scholar 

  55. Horn D, Heuck CJ (1983) Biol Chem 1258:1665

    Google Scholar 

  56. Hoare T, Pelton R (2006) Langmuir 22:7342

    Article  CAS  Google Scholar 

  57. Hoare T, McLean D (2006) Macromol Theory Simul 15:619

    Article  CAS  Google Scholar 

  58. Zhou S, Chu B (1998) J Phys Chem B 102:1364

    Article  CAS  Google Scholar 

  59. Mende M, Petzold G, Buchhammer H (2002) Colloid Polym Sci 280:342

    Article  CAS  Google Scholar 

  60. Lindhoud S, Norde W, Cohen Stuart MA (2009) J Phys Chem B 113:5431

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sebastian Wanders, Michael Kather, Christian Plum, and Manuel Noack for help with the microgel synthesis and complex formation, respectively. This work was supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Richtering.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table 1

(DOC 38 kb)

Table 2

(DOC 36 kb)

Table 3

(DOC 35 kb)

Fig. S1

(DOC 170 kb)

Fig. S2

(DOC 150 kb)

Fig. S3

(DOC 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinen, J., Richtering, W. Polyelectrolyte microgels based on poly-N-isopropylacrylamide: influence of charge density on microgel properties, binding of poly-diallyldimethylammonium chloride, and properties of polyelectrolyte complexes. Colloid Polym Sci 289, 739–749 (2011). https://doi.org/10.1007/s00396-011-2401-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2401-4

Keywords

Navigation