Skip to main content

Advertisement

Log in

MRI of the pelvis at 3 T: very high spatial resolution with sensitivity encoding and flip-angle sweep technique in clinically acceptable scan time

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

The higher signal at 3.0-T allows spatial resolution to be increased without loss in image quality. We evaluated a T2-weighted turbo spin-echo sequence with high spatial resolution (3T-HR) to determine whether this provides clinically useful pelvic MRI.

Materials and methods

We designed a sequence with high spatial resolution (3T-HR) (0.45×0.46×4 mm) that was combined with parallel imaging and the variable refocusing angle technique (8.06 min). We examined 23 patients with gynecological disorders using 3T-HR and a standard sequence (3T-SP; 4.03 min; equivalent to 1.5 T). Two radiologists analyzed tissue contrast, signal to noise, detail delineation and artifact level.

Results

Tissue contrasts and signal to noise were rated equal. Motion artifacts occurred more often with 3T-SP despite the longer scanning time of 3T-HR. The higher spatial resolution provided additional information in four patients. In two patients small myomas were detected, in one patient a lymph node metastasis was apparent, and in one patient 3T-HR excluded tumor invasion.

Conclusions

High spatial resolution pelvic studies with high image quality can be obtained at 3 T in acceptable scan time. The higher spatial resolution that is feasible at 3 T also provides more clinically relevant information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Willinek WA, Gieseke J, von Falkenhausen M, Born M, Hadizadeh D, Manka C, Textor HJ, Schild HH, Kuhl CK (2004) Sensitivity encoding (SENSE) for high spatial resolution time-of-flight MR angiography of the intracranial arteries at 3.0 T. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 176:21–26

    Article  PubMed  CAS  Google Scholar 

  2. Scarabino T, Nemore F, Giannatempo GM, Bertolino A, Di Salle F, Salvolini U (2003) 3.0 T magnetic resonance in neuroradiology. Eur J Radiol 48:154–164

    Article  PubMed  Google Scholar 

  3. Berg A, Singer T, Moser E (2003) High-resolution diffusivity imaging at 3.0 T for the detection of degenerative changes: a trypsin-based arthritis model. Invest Radiol 38:460–466

    Article  PubMed  Google Scholar 

  4. Chen W, Ugurbil K (1999) High spatial resolution functional magnetic resonance imaging at very-high-magnetic field. Top Magn Reson Imaging 10:63–78

    Article  PubMed  CAS  Google Scholar 

  5. Yoneka Y, Kwee IL, Fujii Y, Nakada T (2002) Criteria for normal cavities observed within the adult hippocampus: high resolution magnetic resonance imaging study on a 3.0 T-system. J Neuroimaging 12:231–235

    Article  PubMed  Google Scholar 

  6. Lutterbey G, Gieseke J, von Falkenhausen M, Morakkabati N, Schild H (2005) Lung MRI at 3.0 tesla: a comparison of helical CT and high field MRI in the detection of lund disease. Eur Radiol 15:324–328

    Article  PubMed  CAS  Google Scholar 

  7. Greenman RL, Shirosky JE, Mulkern RV, Rofsky NM (2003) Double inversion black-blood fast spin-echo imaging of the human heart: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging 17:648–655

    Article  PubMed  Google Scholar 

  8. Stuber M, Botnar RF, Fischer SE, Lamerichs R, Smink J, Harvey P, Manning WJ (2002) Preliminary report on in vivo coronary MRA at 3.0 T in humans. Magn Reson Med 48:425–429

    Article  PubMed  Google Scholar 

  9. Peterson DM, Carruthers CE, Wolverton BL et al (1999) Application of a bird-cage coil at 3 tesla to imaging of the human knee using MRI. Magn Reson Med 42:215–221

    Article  PubMed  CAS  Google Scholar 

  10. Fischbach F, Thormann M, Ricke J (2004) 1H magnetic resonance spectroscopy (MRS) of the liver and hepatic malignant tumors at 3.0 tesla. Radiologe 44:1192–1196

    Article  PubMed  CAS  Google Scholar 

  11. Futterer JJ, Scheenen TW, Huisman HJ, Klomp DW, van Dorsten FA, Hulsbergen-van de Kaa CA, Witjes JA, Heerschap A, Barentsz JO (2004) Initial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostate. Invest Radiol 39:671–680

    Article  PubMed  Google Scholar 

  12. Sosna J, Pedrosa I, Dewolf WC, Mahallati H, Lenkinski RE, Rofsky NM (2004) MR imaging of the prostate at 3 tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 tesla. Acad Radiol 11:857–862

    Article  PubMed  Google Scholar 

  13. Bloch BN, Rofsky NM, Baroni RH, Marquis RP, Pedrosa I, Lenkinski RE (2004) 3 tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; initial experience (1). Acad Radiol 11:863–867

    PubMed  Google Scholar 

  14. Morakkabati-Spitz N, Gieseke J, Kuhl C, Lutterbey G, von Falkenhausen M, Traeber F, Zivanovic O, Schild HH (2005) 3.0-T high-field magnetic resonance imaging of the female pelvis: preliminary experiences. Eur Radiol 15:639–644

    Article  PubMed  CAS  Google Scholar 

  15. Schick F (2005) Whole-body MRI at high field: technical limits and clinical potential. Eur Radiol 15:946–959

    Article  PubMed  Google Scholar 

  16. Femlee JP, MA Bernstein MA, Huston J (2000) Analysis of RF heating at 3.0 T. ISMRM, p 2002

  17. Lin C, Bernstein M, Huston J, Fain S (2001) In-vivo and in-vitro measurements of T1 relaxation at 3.0 T. In: Proceedings of the 9th Meeting ISMRM, p 1391

  18. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in human brain at 3.0 T. J Magn Reson Imaging 9:531–538

    Article  PubMed  CAS  Google Scholar 

  19. Al Kwifi O, Emery DJ, Wilman AH (2002) Vessel contrast at three tesla in time-of-flight magnetic resonance angiography of the intracranial and carotid arteries. Magn Reson Imaging 20:181–187

    Article  PubMed  Google Scholar 

  20. Thomas SD, Al Kwifi O, Emery DJ, Wilman AH (2002) Application of magnetization transfer at 3.0 T in three-dimensional time-of-flight magnetic resonance angiography of the intracranial arteries. J Magn Reson Imaging 15:479–483

    Article  PubMed  Google Scholar 

  21. von Falkenhausen M, Gieseke J, Morakkabati N, Lutterbey G, Blömer R, Kuhl CK, Schild HH (2004) 3T MRI of the liver after SPIO application. A comparison to 1.5T. Proc Int Soc Magn Reson Med 11:904

    Google Scholar 

  22. Hennig J, Scheffler K (2001) Hyperechos. Magn Reson Med 46:6–12

    Article  PubMed  CAS  Google Scholar 

  23. Hennig J, Weigel M, Scheffler K (2003) Multi echo sequences with variable refocussing flip angles: optimization of signal behaviour using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49:527–535

    Article  PubMed  Google Scholar 

  24. Gieseke J, Wattjes M, Lutterbey G, von Falkenhausen M, Blömer R Gür-O, Manka C, Schild H Kuhl CK (2004) Ultra fast T2-weighted TSE sequences using flip angle sweep with half-fourier and SENSE at 3T. Neuroradiology 46(Suppl 1):122

    PubMed  Google Scholar 

  25. Gieseke J, Kuhl CK, von Falkenhausen M, Blömer R, Gür O, van Yperen G, Schild HH, Lutterbey G (2004) Ultra fast T2-weighted TSE sequences with flip angle sweep and SENSE at 3T. Proc Int Soc Magn Reson Med 11:74

    Google Scholar 

  26. Sheu MH, Chang CY, Wang JH, Yen MS (2001) Preoperative staging of cervical carcinoma with MR imaging: a reappraisal of diagnostic accuracy and pitfalls. Eur Radiol 11:1828–1833

    Article  PubMed  CAS  Google Scholar 

  27. Sironi S, Belloni C, Taccagni GL et al (1991) Carcinoma of the cervix: value of MR imaging in detecting parametrial involvement. AJR Am J Roentgenol 156:753–756

    PubMed  CAS  Google Scholar 

  28. Togashi K, Nishimura K, Sagoh T et al (1989) Carcinoma of the cervix: staging with MR imaging. Radiology 171:245–251

    PubMed  CAS  Google Scholar 

  29. Okamoto Y, Tanaka YO, Nishida M, Tsunoda H, Yoshikawa H, Itai Y (2003) MR imaging of the uterine cervix: imaging-pathologic correlation. Radiographics 425–45:534–535

    Google Scholar 

  30. Gieseke J, Morakkabati-Spitz N, Kuhl CK, Lutterbey G, von-Falkenhausen M, Schild HH (2004) SAR-Reduktion mit variabler HF-Refokussierung und paralleler Bildgebung bei 3T: Neue Technik ermöglicht hohe räumliche Auflösung des weiblichen Beckens in akzeptabler Messzeit. Fortschr Roentgenstr 176(Suppl 222)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuschin Morakkabati-Spitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morakkabati-Spitz, N., Gieseke, J., Kuhl, C. et al. MRI of the pelvis at 3 T: very high spatial resolution with sensitivity encoding and flip-angle sweep technique in clinically acceptable scan time. Eur Radiol 16, 634–641 (2006). https://doi.org/10.1007/s00330-005-0016-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-0016-1

Keywords

Navigation