Skip to main content
Log in

Fuzzy Logic Structure Analysis of Trabecular Bone of the Calcaneus to Estimate Proximal Femur Fracture Load and Discriminate Subjects with and without Vertebral Fractures using High-Resolution Magnetic Resonance Imaging at 1.5 T and 3 T

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Newly developed fuzzy logic-derived structural parameters were used to characterize trabecular bone architecture in high-resolution magnetic resonance imaging (HR-MRI) of human cadaver calcaneus specimens. These parameters were compared to standard histomorphological structural measures and analyzed concerning performance in discriminating vertebral fracture status and estimating proximal femur fracture load. Sets of 60 sagittal 1.5 T and 3.0 T HR-MRI images of the calcaneus were obtained in 39 cadavers using a fast gradient recalled echo sequence. Structural parameters equivalent to bone histomorphometry and fuzzy logic-derived parameters were calculated using two chosen regions of interest. Calcaneal, spine, and hip bone mineral density (BMD) measurements were also obtained. Fracture status of the thoracic and lumbar spine was assessed on lateral radiographs. Finally, mechanical strength testing of the proximal femur was performed. Diagnostic performance in discriminating vertebral fracture status and estimating femoral fracture load was calculated using regression analyses, two-tailed t-tests of significance, and receiver operating characteristic (ROC) analyses. Significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters (r up to 0.92). Correlations between histomorphological or fuzzy logic parameters and calcaneal BMD were mostly significant (r up to 0.78). ROC analyses demonstrated that standard structural parameters were able to differentiate persons with and without vertebral fractures (area under the curve [AZ] up to 0.73). However, none of the parameters obtained in the 1.5-T images and none of the fuzzy logic parameters discriminated persons with and without vertebral fractures. Significant correlations were found between fuzzy or structural parameters and femoral fracture load. Using multiple regression analysis, none of the structural or fuzzy parameters were found to add discriminative value to BMD alone. In summary significant correlations were obtained at both field strengths between all structural and fuzzy logic parameters. However, fuzzy logic-based calcaneal parameters were not well suited for vertebral fracture discrimination. Although significant correlations were found between fuzzy or structural parameters and femoral fracture load, multiple regression analysis showed limited improvement for estimating femoral failure load in addition to femoral BMD alone. Local femoral measurements are still needed to estimate femoral bone strength. Overall, parameters obtained at 3.0 T performed better than those at 1.5 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kleerekoper J, Villanueva A, Stanciu J (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597

    Article  PubMed  CAS  Google Scholar 

  2. Ross P, Davis J, Wasnich R, Vogel J (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Cacif Int Tissue 46:149–161

    Article  CAS  Google Scholar 

  3. Link T, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof I, Glueer C, Adams J (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788

    Article  PubMed  CAS  Google Scholar 

  4. Stenstrom M, Olander B, Lehto-Axtelius D, Madsen J, Nordsletten L, Carlsson G (2000) Bone mineral density and bone structure parameters as predictors of bone strength: an analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297

    Article  PubMed  CAS  Google Scholar 

  5. Wigderowitz C, Paterson C, Dashti H, McGurty D, Rowley D (2000) Prediction of bone strength from cancellous structure of the distal radius: can we improve on DXA? Osteoporos Int 11:840–846

    Article  PubMed  CAS  Google Scholar 

  6. Link T, Majumdar S, Augat P, Lin J, Newitt D, Lu Y, Lane N, Genant H (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

  7. Link T, Majumdar S, Lin J, Newitt D, Augat P, Ouyang X, Mathur A, Genant H (1998) A comparative study of trabecular bone properties in the spine and femur using high resolution MRI and CT. J Bone Miner Res 13:122–132

    Article  PubMed  CAS  Google Scholar 

  8. Majumdar S, Link T, Augat P, Lin J, Newitt D, Lane N, Genant H (1999) Trabecular bone architecture in the distal radius using MR imaging in subjects with fractures of the proximal femur. Osteoporos Int 10:231–239

    Article  PubMed  CAS  Google Scholar 

  9. Wehrli F, Hwang S, Ma J, Song H, Ford J, Haddad J (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357

    PubMed  CAS  Google Scholar 

  10. Wehrli F, Gomberg B, Saha P, Song H, Hwang S, Snyder P (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    Article  PubMed  CAS  Google Scholar 

  11. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, Eckstein F, Majumdar S, Link TM (2006) Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology 239:488–496

    Article  PubMed  Google Scholar 

  12. Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    Article  PubMed  CAS  Google Scholar 

  13. Link T, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, Majumdar S (2003) High resolution MRI versus multislice spiral CT – which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671

    PubMed  Google Scholar 

  14. Vieth V, Link T, Lotter A, Persigehl T, Newitt D, Filler T, Heindel W, Majumdar S (2001) Does the trabecular structure depicted by high resolution MRI of the calcaneus reflect the true bone structure? Invest Radiol 36:210–217

    Article  PubMed  CAS  Google Scholar 

  15. Issever AS, Vieth V, Lotter A, Meier N, Laib A, Newitt D, Majumdar S, Link TM (2002) Local differences in the trabecular bone structure of the proximal femur depicted with high-spatial-resolution MR imaging and multisection CT. Acad Radiol 9:1395–1406

    Article  PubMed  Google Scholar 

  16. Gomberg BR, Saha PK, Song HK, Hwang SN, Wehrli FW (2000) Topological analysis of trabecular bone MR images. IEEE Trans Med Imaging 19:166–174

    Article  PubMed  CAS  Google Scholar 

  17. Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276

    Article  PubMed  CAS  Google Scholar 

  18. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    Article  PubMed  CAS  Google Scholar 

  19. Pothuaud L, Laib A, Levitz P, Benhamou CL, Majumdar S (2002) Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography. J Bone Miner Res 17:1883–1895

    Article  PubMed  Google Scholar 

  20. Majumdar S (1994) Analysis of trabecular bone structure in the distal radius using high-resolution MRI. Eur Radiol 4:517–524

    Article  Google Scholar 

  21. Carballido-Gamio J, Phan C, Link TM, Majumdar S (2006) Characterization of trabecular bone structure from high-resolution magnetic resonance images using fuzzy logic. Magn Reson Imaging 24:1023–1029

    Article  PubMed  Google Scholar 

  22. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A (2003) Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 227:708–717

    Article  PubMed  Google Scholar 

  23. Boutry N, Cortet B, Chappard D, Dubois P, Demondion X, Marchandise X, Cotten A (2004) Bone structure of the calcaneus: analysis with magnetic resonance imaging and correlation with histomorphometric study. Osteoporos Int 15:827–833

    Article  PubMed  Google Scholar 

  24. Link TM, Bauer J, Kollstedt A, Stumpf I, Hudelmaier M, Settles M, Majumdar S, Lochmuller EM, Eckstein F (2004) Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol 39:487–497

    Article  PubMed  Google Scholar 

  25. Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408

    Article  PubMed  Google Scholar 

  26. Cortet B, Dubois P, Boutry N, Palos G, Cotten A, Marchandise X (2002) Computed tomography image analysis of the calcaneus in male osteoporosis. Osteoporos Int 13:33–41

    Article  PubMed  CAS  Google Scholar 

  27. Herlidou S, Grebe R, Grados F, Leuyer N, Fardellone P, Meyer ME (2004) Influence of age and osteoporosis on calcaneus trabecular bone structure: a preliminary in vivo MRI study by quantitative texture analysis. Magn Reson Imaging 22:237–243

    Article  PubMed  CAS  Google Scholar 

  28. Rupprecht M, Pogoda P, Mumme M, Rueger JM, Puschel K, Amling M (2006) Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res 24:664–674

    Article  PubMed  Google Scholar 

  29. Patel PV, Prevrhal S, Bauer JS, Phan C, Eckstein F, Lochmuller EM, Majumdar S, Link TM (2005) Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 29:246–253

    Article  PubMed  Google Scholar 

  30. Gefen A, Seliktar R (2004) Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus. Med Eng Phys 26:119–129

    Article  PubMed  CAS  Google Scholar 

  31. Majumdar S, Genant HK, Grampp S, Newitt DC, Truong VH, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    Article  PubMed  CAS  Google Scholar 

  32. Parfitt M, Drezner M, Glorieux F, Kanis J, Malluche H, Meunier P, Ott S, Recker R (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    PubMed  CAS  Google Scholar 

  33. Newitt DC, Majumdar S, van Rietbergen B, von Ingersleben G, Harris ST, Genant HK, Chesnut C, Garnero P, MacDonald B (2002) In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Osteoporos Int 13:6–17

    Article  PubMed  CAS  Google Scholar 

  34. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  PubMed  CAS  Google Scholar 

  35. Eckstein F, Lochmuller EM, Lill CA, Kuhn V, Schneider E, Delling G, Muller R (2002) Bone strength at clinically relevant sites displays substantial heterogeneity and is best predicted from site-specific bone densitometry. J Bone Miner Res 17:162–171

    Article  PubMed  Google Scholar 

  36. Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmuller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19:379–385

    Article  PubMed  Google Scholar 

  37. Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    Article  PubMed  Google Scholar 

  38. Lochmuller EM, Burklein D, Kuhn V, Glaser C, Muller R, Gluer CC, Eckstein F (2002) Mechanical strength of the thoracolumbar spine in the elderly: prediction from in situ dual-energy X-ray absorptiometry, quantitative computed tomography (QCT), upper and lower limb peripheral QCT, and quantitative ultrasound. Bone 31:77–84

    Article  PubMed  Google Scholar 

  39. Yung PS, Lai YM, Tung PY, Tsui HT, Wong CK, Hung VW, Qin L (2005) Effects of weight bearing and non-weight bearing exercises on bone properties using calcaneal quantitative ultrasound. Br J Sports Med 39:547–551

    Article  PubMed  CAS  Google Scholar 

  40. Jergas M, Gluer CC (1997) Assessment of fracture risk by bone density measurements. Semin Nucl Med 27:261–275

    Article  PubMed  CAS  Google Scholar 

  41. Ryan PJ (1997) Overview of role of BMD measurements in managing osteoporosis. Semin Nucl Med 27:197–209

    Article  PubMed  CAS  Google Scholar 

  42. Lochmuller EM, Zeller JB, Kaiser D, Eckstein F, Landgraf J, Putz R, Steldinger R (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598

    Article  PubMed  CAS  Google Scholar 

  43. Lochmuller EM, Miller P, Burklein D, Wehr U, Rambeck W, Eckstein F (2000) In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 11:361–367

    Article  PubMed  CAS  Google Scholar 

  44. Lochmuller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216

    Article  PubMed  CAS  Google Scholar 

  45. Lochmuller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18:906–912

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, P.V., Eckstein, F., Carballido-Gamio, J. et al. Fuzzy Logic Structure Analysis of Trabecular Bone of the Calcaneus to Estimate Proximal Femur Fracture Load and Discriminate Subjects with and without Vertebral Fractures using High-Resolution Magnetic Resonance Imaging at 1.5 T and 3 T. Calcif Tissue Int 81, 294–304 (2007). https://doi.org/10.1007/s00223-007-9058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9058-5

Keywords

Navigation