Skip to main content
Log in

Bone structure of the calcaneus: analysis with magnetic resonance imaging and correlation with histomorphometric study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The purpose of this study was to compare structural measurements obtained from MR images of the calcaneus with those obtained from conventional histomorphometry. Sagittal magnetic resonance (MR) images of the calcaneus of 24 fresh human cadaveric feet were obtained at a spatial resolution achievable in vivo. A three-dimensional gradient echo-sequence was used with a slice thickness of 700 μm and in plane resolution of 172×172 μm. Structural analysis (four histomorphometric parameters; seven connectivity parameters) was performed in the superior region of the calcaneus. Bone biopsy specimens were obtained in the same area and were sectioned for histomorphometric study. Most of the MR histomorphometric parameters were overestimated (by a factor ranging from 0.8 to 3), as compared with histomorphometry. However, significant (P<0.05) correlations were found between MR imaging and histomorphometric measurements for bone volume/tissue volume, trabecular separation, trabecular number, star volume of the marrow space, node count and terminus count. MR histomorphometric parameters correlated much better with histomorphometry than connectivity parameters. This study suggests that structural parameters characterizing cancellous bone in the calcaneus can be derived from MR images in the limited spatial resolution regime applicable in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Consensus Development Conference on Osteoporosis (1993) Hong Kong, April 1–2. Prophylaxis and treatment of osteoporosis. Am J Med 95:1S–78S

    Google Scholar 

  2. Majumdar S, Genant HK, Grampp S et al. (1997) Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12:111–118

    CAS  PubMed  Google Scholar 

  3. Majumdar S, Link TM, Augat P, Lin JC, Newitt D, Lane NE, Genant HK (1999) Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 10:231–239

    CAS  PubMed  Google Scholar 

  4. Cortet B, Dubois P, Boutry N, Bourel P, Cotten A, Marchandise X (1999) Image analysis of the distal radius trabecular network using computed tomography. Osteoporos Int 9:410–419

    CAS  PubMed  Google Scholar 

  5. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y, Lane NE, Genant HK (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    CAS  PubMed  Google Scholar 

  6. Link TM, Lotter A, Beyer F, Christiansen S, Newitt D, Lu Y, Schmid C, Majumdar S (2000) Changes in calcaneal trabecular bone structure after heart transplantation: an MR imaging study. Radiology 217:855–862

    CAS  PubMed  Google Scholar 

  7. Cortet B, Dubois P, Boutry N, Palos G, Cotten A, Marchandise X (2002) Computed tomography image analysis of the calcaneus in male osteoporosis. Osteoporos Int 13:33–41

    Article  Google Scholar 

  8. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A (2003) A preliminary in vivo assessment of trabecular bone structure of the calcaneus in male osteoporosis using magnetic resonance imaging. Radiology 227:708–717

    PubMed  Google Scholar 

  9. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Raos DS (1983) Relationship between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    CAS  PubMed  Google Scholar 

  10. Compston JE, Mellish RW, Garrahan NJ (1987) Age-related changes in iliac crest trabecular micro-anatomic bone in man. Bone 8:289–312

    CAS  PubMed  Google Scholar 

  11. Croucher PI, Garrahan NJ, Compston JE (1996) Assessment of cancellous bone structure: comparison of strut analysis trabecular bone pattern factor, and marrow space star volume. J Bone Miner Res 11:955–961

    CAS  PubMed  Google Scholar 

  12. Barger-Lux MJ, Recker RR (2002) Bone microstructure in osteoporosis: transilial biopsy and histomorphometry. Top Magnet Res Imaging 13:297–305

    Article  Google Scholar 

  13. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:585–610

    Google Scholar 

  14. Compston JE (1994) Connectivity of cancellous bone: assessment and mechanical implications. Bone 15:463–466

    CAS  PubMed  Google Scholar 

  15. Levitz P, Tchoubar D (1992) Disorder porous solids: from chord distributions to small angle scattering. J Phys I France 2:771–790

    Article  CAS  Google Scholar 

  16. Chappard D, Legrand E, Basle MF, Fromont P, Racineux JL, Rebel A, Audran M (1996) Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res 11:676–685

    CAS  PubMed  Google Scholar 

  17. Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1992) Trabecular bone pattern factor—a new parameter for simple quantification of bone microarchitecture. Bone 13:327–330

    CAS  PubMed  Google Scholar 

  18. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    CAS  PubMed  Google Scholar 

  19. Cendre E, Mitton D, Roux JP, Arlot ME, Duboeuf F, Burt-Pichat B, Rumelhart C, Peix G, Meunier PJ (1999) High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics. Osteoporos Int 10:353–360

    Article  CAS  PubMed  Google Scholar 

  20. Banse X, Devogelaer JP, Grynpas M (2002) Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 30:829–835

    Article  CAS  PubMed  Google Scholar 

  21. Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E, Lotz J, Kinney J, Genant H (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    CAS  PubMed  Google Scholar 

  22. Pothuaud L, Laib A, Levitz P, Benhamou CL, Majumdar S (2002) Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-μm resolution microcomputed tomography. J Bone Miner Res 17:1883–1895

    PubMed  Google Scholar 

  23. Engelke K, Hahn M, Takada M, Vogel M, Ouyang X, Delling G, Genant HK (2001) Structural analysis of high resolution in vitro MR images compared to stained grindings. Calcif Tissue Int 68:163–171

    Article  CAS  PubMed  Google Scholar 

  24. Vieth V, Link TM, Lotter A, Persigehl T, Newitt D, Heindel W, Majumdar S (2001) Does the trabecular bone structure depicted by high-resolution MR of the calcaneus reflect the true bone structure? Invest Radiol 36:210–217

    CAS  PubMed  Google Scholar 

  25. Linde F, Sorensen CF (1993) The effect of different storage on the mechanical properties of bone. J Biomech 26:1249–1252

    CAS  PubMed  Google Scholar 

  26. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445–454

    CAS  PubMed  Google Scholar 

  27. Link TM, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, Majumdar S (2003) High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 13:663–671

    PubMed  Google Scholar 

  28. Wehrli FW, Hwang SN, Ma J, Kwon Song HK, Ford JC, Haddad JG (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357

    CAS  PubMed  Google Scholar 

  29. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Boutry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutry, N., Cortet, B., Chappard, D. et al. Bone structure of the calcaneus: analysis with magnetic resonance imaging and correlation with histomorphometric study. Osteoporos Int 15, 827–833 (2004). https://doi.org/10.1007/s00198-004-1619-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-004-1619-0

Keywords

Navigation