Skip to main content
Log in

Hip Fracture Discrimination Based on Statistical Multi-parametric Modeling (SMPM)

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Studies using quantitative computed tomography (QCT) and data-driven image analysis techniques have shown that trabecular and cortical volumetric bone mineral density (vBMD) can improve the hip fracture prediction of dual-energy X-ray absorptiometry areal BMD (aBMD). Here, we hypothesize that (1) QCT imaging features of shape, density and structure derived from data-driven image analysis techniques can improve the hip fracture discrimination of classification models based on mean femoral neck aBMD (Neck.aBMD), and (2) that data-driven cortical bone thickness (Ct.Th) features can improve the hip fracture discrimination of vBMD models. We tested our hypotheses using statistical multi-parametric modeling (SMPM) in a QCT study of acute hip fracture of 50 controls and 93 fragility fracture cases. SMPM was used to extract features of shape, vBMD, Ct.Th, cortical vBMD, and vBMD in a layer adjacent to the endosteal surface to develop hip fracture classification models with machine learning logistic LASSO. The performance of these classification models was evaluated in two aspects: (1) their hip fracture classification capability without Neck.aBMD, and (2) their capability to improve the hip fracture classification of the Neck.aBMD model. Assessments were done with 10-fold cross-validation, areas under the receiver operating characteristic curve (AUCs), differences of AUCs, and the integrated discrimination improvement (IDI) index. All LASSO models including SMPM-vBMD features, and the majority of models including SMPM-Ct.Th features performed significantly better than the Neck.aBMD model; and all SMPM features significantly improved the hip fracture discrimination of the Neck.aBMD model (Hypothesis 1). An interesting finding was that SMPM-features of vBMD also captured Ct.Th patterns, potentially explaining the superior classification performance of models based on SMPM-vBMD features (Hypothesis 2). Age, height and weight had a small impact on model performances, and the model of shape, vBMD and Ct.Th consistently yielded better performances than the Neck.aBMD models. Results of this study clearly support the relevance of bone density and quality on the assessment of hip fracture, and demonstrate their potential on patient and healthcare cost benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Allison, S. J., K. E. S. Poole, G. M. Treece, A. H. Gee, C. Tonkin, W. J. Rennie, J. P. Folland, G. D. Summers, and K. Brooke-Wavell. The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: a randomized controlled unilateral intervention. J. Bone Miner. Res. 30(9):1709–1716, 2015.

    CAS  PubMed  Google Scholar 

  2. Baker-LePain, J. C., K. R. Luker, J. A. Lynch, N. Parimi, M. C. Nevitt, and N. E. Lane. Active shape modeling of the hip in the prediction of incident hip fracture. J. Bone Miner. Res. 26(3):468–474, 2011.

    PubMed  Google Scholar 

  3. Bauer, D. C., P. Garnero, J. P. Bilezikian, S. L. Greenspan, K. E. Ensrud, C. J. Rosen, L. Palermo, and D. M. Black. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 91(4):1370–1375, 2006.

    CAS  PubMed  Google Scholar 

  4. Berry, S. D., E. J. Samelson, M. J. Pencina, R. R. McLean, L. A. Cupples, K. E. Broe, and D. P. Kiel. Repeat bone mineral density screening and prediction of hip and major osteoporotic fracture. JAMA 310(12):1256–1262, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Black, D. M., M. L. Bouxsein, L. M. Marshall, S. R. Cummings, T. F. Lang, J. A. Cauley, K. E. Ensrud, C. M. Nielson, E. S. Orwoll, and G. Osteoporotic Fractures in Men Research. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J. Bone Miner. Res. 23(8):1326–1333, 2008.

    PubMed  PubMed Central  Google Scholar 

  6. Blank, J. B., P. M. Cawthon, M. L. Carrion-Petersen, L. Harper, J. P. Johnson, E. Mitson, and R. R. Delay. Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp. Clin. Trials 26(5):557–568, 2005.

    PubMed  Google Scholar 

  7. Bousson, V. D., J. Adams, K. Engelke, M. Aout, M. Cohen-Solal, C. Bergot, D. Haguenauer, D. Goldberg, K. Champion, R. Aksouh, E. Vicaut, and J. D. Laredo. In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J. Bone Miner. Res. 26(4):881–893, 2011.

    PubMed  Google Scholar 

  8. Bredbenner, T. L., R. L. Mason, L. M. Havill, E. S. Orwoll, D. P. Nicolella, and S. Osteoporotic Fractures in Men. Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J. Bone Miner. Res. 29(9):2090–2100, 2014.

    PubMed  PubMed Central  Google Scholar 

  9. Burge, R., B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J. Bone Miner. Res. 22(3):465–475, 2007.

    PubMed  Google Scholar 

  10. Carballido-Gamio, J., S. Bonaretti, I. Saeed, R. Harnish, R. Recker, A. J. Burghardt, J. H. Keyak, T. Harris, S. Khosla, and T. F. Lang. Automatic multi-parametric quantification of the proximal femur with quantitative computed tomography. Quant. Imaging Med. Surg. 5(4):552–568, 2015.

    PubMed  PubMed Central  Google Scholar 

  11. Carballido-Gamio, J., R. Harnish, I. Saeed, T. Streeper, S. Sigurdsson, S. Amin, E. J. Atkinson, T. M. Therneau, K. Siggeirsdottir, X. Cheng, L. J. Melton, 3rd, J. Keyak, V. Gudnason, S. Khosla, T. B. Harris, and T. F. Lang. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J. Bone Miner. Res. 28(3):537–546, 2013.

    PubMed  PubMed Central  Google Scholar 

  12. Carballido-Gamio, J., R. Harnish, I. Saeed, T. Streeper, S. Sigurdsson, S. Amin, E. J. Atkinson, T. M. Therneau, K. Siggeirsdottir, X. Cheng, L. J. Melton, 3rd, J. H. Keyak, V. Gudnason, S. Khosla, T. B. Harris, and T. F. Lang. Structural patterns of the proximal femur in relation to age and hip fracture risk in women. Bone 57(1):290–299, 2013.

    PubMed  Google Scholar 

  13. Carballido-Gamio, J., and D. P. Nicolella. Computational anatomy in the study of bone structure. Curr. Osteoporos Rep. 11(3):237–245, 2013.

    PubMed  Google Scholar 

  14. Carballido-Gamio, J., A. Yu, L. Wang, S. Yongbin, T. F. Lang, and X. Cheng. Fracture risk estimation with statistical multi-parametric modeling. ASBMR Annual Meeting, 2016.

  15. Cootes, T. F. and C. J. Taylor. Statistical models of appearance for medical image analysis and computer vision. Medical Imaging: 2001: Image Processing, Pts 1–3 2(27):236–248, 2001.

  16. Cootes, T. F., C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models—their training and application. Comput. Vis. Image Underst. 61(1):38–59, 1995.

    Google Scholar 

  17. Crabtree, N. J., H. Kroger, A. Martin, H. A. Pols, R. Lorenc, J. Nijs, J. J. Stepan, J. A. Falch, T. Miazgowski, S. Grazio, P. Raptou, J. Adams, A. Collings, K. T. Khaw, N. Rushton, M. Lunt, A. K. Dixon and J. Reeve. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int. 13(1):48–54, 2002.

    CAS  PubMed  Google Scholar 

  18. Dong, X. L. N., R. Pinninti, T. Lowe, P. Cussen, J. E. Ballard, D. Di Paolo, and M. Shirvaikar. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures. J. Biomech. 48(6):1043–1051, 2015.

    PubMed  PubMed Central  Google Scholar 

  19. Eastell, R., T. Lang, S. Boonen, S. Cummings, P. D. Delmas, J. A. Cauley, Z. Horowitz, E. Kerzberg, G. Bianchi, D. Kendler, P. Leung, Z. Man, P. Mesenbrink, E. F. Eriksen, D. M. Black, and H. P. F. Trial. Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos Int. 21(7):1277–1285, 2010.

    CAS  PubMed  Google Scholar 

  20. Engelke, K., T. Fuerst, B. Dardzinski, J. Kornak, S. Ather, H. K. Genant, and A. de Papp. Odanacatib treatment affects trabecular and cortical bone in the femur of postmenopausal women: results of a two-year placebo-controlled trial. J. Bone Miner. Res. 30(1):30–38, 2015.

    CAS  PubMed  Google Scholar 

  21. Engelke, K., T. Fuerst, G. Dasic, R. Y. Davies, and H. K. Genant. Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone 46(6):1626–1632, 2010.

    PubMed  Google Scholar 

  22. Engelke, K., T. Lang, S. Khosla, L. Qin, P. Zysset, W. D. Leslie, J. A. Shepherd, and J. T. Schousboe. Clinical Use of Quantitative Computed Tomography (QCT) of the Hip in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part I. J. Clin. Densitom. 18(3):338–358, 2015.

    PubMed  Google Scholar 

  23. Genant, H. K., C. Libanati, K. Engelke, J. R. Zanchetta, A. Hoiseth, C. K. Yuen, S. Stonkus, M. A. Bolognese, E. Franek, T. Fuerst, H. S. Radcliffe, and M. R. McClung. Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone 56(2):482–488, 2013.

    CAS  PubMed  Google Scholar 

  24. Goodyear, S. R., R. J. Barr, E. McCloskey, S. Alesci, R. M. Aspden, D. M. Reid, and J. S. Gregory. Can we improve the prediction of hip fracture by assessing bone structure using shape and appearance modelling? Bone 53(1):188–193, 2013.

    CAS  PubMed  Google Scholar 

  25. Gregory, J. S., A. Stewart, P. E. Undrill, D. M. Reid, and R. M. Aspden. Bone shape, structure, and density as determinants of osteoporotic hip fracture: a pilot study investigating the combination of risk factors. Invest. Radiol. 40(9):591–597, 2005.

    PubMed  Google Scholar 

  26. Gregory, J. S., D. Testi, A. Stewart, P. E. Undrill, D. M. Reid, and R. M. Aspden. A method for assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos. Int. 15(1):5–11, 2004.

    CAS  PubMed  Google Scholar 

  27. Harris, T. B., L. J. Launer, G. Eiriksdottir, O. Kjartansson, P. V. Jonsson, G. Sigurdsson, G. Thorgeirsson, T. Aspelund, M. E. Garcia, M. F. Cotch, H. J. Hoffman, and V. Gudnason. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165(9):1076–1087, 2007.

    PubMed  PubMed Central  Google Scholar 

  28. Johannesdottir, F., T. Turmezei, and K. E. Poole. Cortical bone assessed with clinical computed tomography at the proximal femur. J. Bone Miner. Res. 29(4):771–783, 2014.

    PubMed  Google Scholar 

  29. Keaveny, T. M., P. F. Hoffmann, M. Singh, L. Palermo, J. P. Bilezikian, S. L. Greenspan, and D. M. Black. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J. Bone Miner. Res. 23(12):1974–1982, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Keyak, J. H., S. Sigurdsson, G. Karlsdottir, D. Oskarsdottir, A. Sigmarsdottir, S. Zhao, J. Kornak, T. B. Harris, G. Sigurdsson, B. Y. Jonsson, K. Siggeirsdottir, G. Eiriksdottir, V. Gudnason, and T. F. Lang. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48(6):1239–1245, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Keyak, J. H., S. Sigurdsson, G. S. Karlsdottir, D. Oskarsdottir, A. Sigmarsdottir, J. Kornak, T. B. Harris, G. Sigurdsson, B. Y. Jonsson, K. Siggeirsdottir, G. Eiriksdottir, V. Gudnason, and T. F. Lang. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone 57(1):18–29, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lane, N. E., S. Sanchez, G. W. Modin, H. K. Genant, E. Pierini, and C. D. Arnaud. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J. Bone Miner. Res. 15(5):944–951, 2000.

    CAS  PubMed  Google Scholar 

  33. Lang, T. F., I. H. Saeed, T. Streeper, J. Carballido-Gamio, R. J. Harnish, L. A. Frassetto, S. M. Lee, J. D. Sibonga, J. H. Keyak, B. A. Spiering, C. M. Grodsinsky, J. J. Bloomberg, and P. R. Cavanagh. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J. Bone Miner. Res. 29(6):1337–1345, 2014.

    PubMed  PubMed Central  Google Scholar 

  34. Leslie, W. D., P. S. Pahlavan, J. F. Tsang, L. M. Lix, and P. Manitoba Bone Density. Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos. Int 20(10):1767–1774, 2009.

    CAS  PubMed  Google Scholar 

  35. Lewiecki, E. M., T. M. Keaveny, D. L. Kopperdahl, H. K. Genant, K. Engelke, T. Fuerst, A. Kivitz, R. Y. Davies, and L. A. Fitzpatrick. Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 94(1):171–180, 2009.

    CAS  PubMed  Google Scholar 

  36. Li, G. W., S. X. Chang, Z. Xu, Y. Chen, H. Bao, and X. Shi. Prediction of hip osteoporotic fractures from composite indices of femoral neck strength. Skelet. Radiol. 42(2):195–201, 2013.

    Google Scholar 

  37. Li, W., J. Kornak, T. Harris, J. Keyak, C. Li, Y. Lu, X. Cheng, and T. Lang. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone 44(4):596–602, 2009.

    PubMed  Google Scholar 

  38. Orwoll, E., J. B. Blank, E. Barrett-Connor, J. Cauley, S. Cummings, K. Ensrud, C. Lewis, P. M. Cawthon, R. Marcus, L. M. Marshall, J. McGowan, K. Phipps, S. Sherman, M. L. Stefanick, and K. Stone. Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp. Clin. Trials 26(5):569–585, 2005.

    PubMed  Google Scholar 

  39. Poole, K. E., G. M. Treece, P. M. Mayhew, J. Vaculik, P. Dungl, M. Horak, J. J. Stepan, and A. H. Gee. Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS ONE 7(6):e38466, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Qian, J., T. Hastie, J. Friedman, R. Tibshirani and N. Simon. Glmnet for Matlab, 2013. http://www.stanford.edu/~hastie/glmnet_matlab/.

  41. Schuler, B., K. D. Fritscher, V. Kuhn, F. Eckstein, T. M. Link, and R. Schubert. Assessment of the individual fracture risk of the proximal femur by using statistical appearance models. Med. Phys. 37(6):2560–2571, 2010.

    PubMed  Google Scholar 

  42. Sellmeyer, D. E., D. M. Black, L. Palermo, S. Greenspan, K. Ensrud, J. Bilezikian, and C. J. Rosen. Hetereogeneity in skeletal response to full-length parathyroid hormone in the treatment of osteoporosis. Osteoporos. Int. 18(7):973–979, 2007.

    CAS  PubMed  Google Scholar 

  43. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc B. 58(1):267–288, 1996.

    Google Scholar 

  44. Treece, G. M., A. H. Gee, C. Tonkin, S. K. Ewing, P. M. Cawthon, D. M. Black, K. E. Poole, and S. Osteoporotic Fractures in Men. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study. J. Bone Miner. Res. 30(11):2067–2077, 2015.

    PubMed  PubMed Central  Google Scholar 

  45. Walker, M. D., I. Saeed, D. J. McMahon, J. Udesky, G. Liu, T. Lang, and J. P. Bilezikian. Volumetric bone mineral density at the spine and hip in Chinese American and White women. Osteoporos. Int. 23(10):2499–2506, 2012.

    CAS  PubMed  Google Scholar 

  46. Whitmarsh, T., K. D. Fritscher, L. Humbert, L. M. Del Rio Barquero, T. Roth, C. Kammerlander, M. Blauth, R. Schubert, and A. F. Frangi. A statistical model of shape and bone mineral density distribution of the proximal femur for fracture risk assessment. Med. Image Comput. Comput. Assist. Interv. 14(Pt 2):393–400, 2011.

    PubMed  Google Scholar 

  47. Wiener, J. M., and J. Tilly. Population ageing in the United States of America: implications for public programmes. Int. J. Epidemiol. 31(4):776–781, 2002.

    PubMed  Google Scholar 

  48. Yang, L., W. J. M. Udall, E. V. McCloskey, and R. Eastell. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos. Int. 25(1):251–263, 2014.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH/NIAMS under grants R01AR068456 and R01AR064140. This study was also supported by grants from the National Natural Science Foundation of China (81071131), the Beijing Bureau of Health 215 Program (2013-3-033; 2009-2-03), Beijing Technology Foundation for Selected Overseas Chinese Scholar and Beijing Talents Fund (2015000021467), Capital Characteristic Clinic Project (Z141107002514072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Carballido-Gamio.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section has the purpose of supporting the necessity of a third PCA step to address potential correlations between shape and feature principal component scores.

In this study, for the first 10 principal components, out of 100 correlations of principal component scores: (1) 37% between shape and vBMD, (2) 43% between shape and Ct.Th, (3) 29% between shape and Ct.vBMD, and (4) 40% between shape and EndoTb.vBMD, were significant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carballido-Gamio, J., Yu, A., Wang, L. et al. Hip Fracture Discrimination Based on Statistical Multi-parametric Modeling (SMPM). Ann Biomed Eng 47, 2199–2212 (2019). https://doi.org/10.1007/s10439-019-02298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02298-x

Keywords

Navigation