Skip to main content

Advertisement

Early decompression of the injured optic nerve reduces axonal degeneration and improves functional outcome in the adult rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The putative beneficial role of an early decompression of injured CNS tissue following trauma remains controversial. In this study, we approach this scientific query using a standardized injury of the optic nerve in adult rats. Adult Sprague–Dawley rats were subjected to a standardized optic nerve constriction injury by applying a loose ligature around the nerve for 5 min, 1, 6 or 24 h. All animals were sacrificed at 28 dpi. Viable axons distal to the injury were quantified using semithin sections, and regenerative fibers were studied using antisera to neurofilament and GAP43. Axonal degeneration and glial scar development were analyzed using Fluoro-Jade staining and anti-GFAP, respectively. Visual function was studied with visual evoked potentials (VEP). No significant differences were observed between 1 and 6 h of optic nerve compression. However, the number of viable axons analyzed with neurofilament and on semithin sections, decreased significantly between 6 and 24 h, paralleled by an increase in Fluoro-Jade labeled axonal debris (P < 0.001). GFAP-IR density was significantly higher (P < 0.001) in the 24 h compression group in comparison to 6 h. VEP showed preserved, but impaired visual function in animals subjected to compression up to 6 h, compared to an abolished cortical response at 24 h. Regenerative GAP43-positive sprouts were occasionally found distal to the lesion in animals subjected to compression up to 6 h, but not at 24 h. These findings suggest that early optic nerve decompression within hours after the initial trauma is beneficial for functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AANS/CNS (2002) Guidlines for the management of acute cervical spine and spinal cord injuries. Neurosurgery 50(Suppl):S7–S17

    Article  Google Scholar 

  • Bellander BM, von Holst H, Fredman P, Svensson M (1996) Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J Neurosurg 85:468–475

    PubMed  CAS  Google Scholar 

  • Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M (2001) Complement activation in the human brain after traumatic head injury. J Neurotrauma 18:1295–1311

    Article  PubMed  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings M, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1997) Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. National acute spinal cord injury study. Jama 277:1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Holford TR, Leo-Summers L, Aldrich EF, Fazl M, Fehlings MG, Herr DL, Hitchon PW, Marshall LF, Nockels RP, Pascale V, Perot PL Jr, Piepmeier J, Sonntag VK, Wagner F, Wilberger JE, Winn HR, Young W (1998) Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up. Results of the third national acute spinal cord injury randomized controlled trial. J Neurosurg 89:699–706

    Article  PubMed  CAS  Google Scholar 

  • Brecknell JE, Fawcett JW (1996) Axonal regeneration. Biol Rev Camb Philos Soc 71:227–255

    Article  PubMed  CAS  Google Scholar 

  • Cajal SRY (1928) Degeneration and regeneration of the nervous system. RM May, London

    Google Scholar 

  • Campbell G, Holt JK, Shotton HR, Anderson PN, Bavetta S, Lieberman AR (1999) Spontaneous axonal regeneration after optic nerve injury in adult rat. Neuroreport 10:3955–3960

    Article  PubMed  CAS  Google Scholar 

  • Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683

    PubMed  CAS  Google Scholar 

  • Dezawa M, Kawana K, Negishi H, Adachi-Usami E (1999) Glial cells in degenerating and regenerating optic nerve of the adult rat. Brain Res Bull 48:573–579

    Article  PubMed  CAS  Google Scholar 

  • Dimar JR II, Glassman SD, Raque GH, Zhang YP, Shields CB (1999) The influence of spinal canal narrowing and timing of decompression on neurologic recovery after spinal cord contusion in a rat model. Spine 24:1623–1633

    Article  PubMed  Google Scholar 

  • Doster SK, Lozano AM, Aguayo AJ, Willard MB (1991) Expression of the growth-associated protein GAP-43 in adult rat retinal ganglion cells following axon injury. Neuron 6:635–647

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Tator CH (1999) An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J Neurosurg 91:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Heiduschka P, Thanos S (2001) Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol 172:257–272

    Article  PubMed  CAS  Google Scholar 

  • Foerster AP, Holmes MJ (1999) Spontaneous regeneration of severed optic axons restores mapped visual responses to the adult rat superior colliculus. Eur J Neurosci 11:3151–3166

    Article  PubMed  CAS  Google Scholar 

  • Forrester J, Peters A (1967) Nerve fibres in optic nerve of rat. Nature 214:245–247

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Wolburg H (1996) Cellular reactions at the lesion site after crushing of the rat optic nerve. Glia 16:227–240

    Article  PubMed  CAS  Google Scholar 

  • Gasque P, Neal JW, Singhrao SK, McGreal EP, Dean YD, Van BJ, Morgan BP (2002) Roles of the complement system in human neurodegenerative disorders: pro-inflammatory and tissue remodeling activities. Mol Neurobiol 25:1–17

    Google Scholar 

  • Gellrich NC, Gellrich MM, Zerfowski M, Eufinger H, Eysel UT (1997) Clinical and experimental study of traumatic optic nerve damage. Ophthalmologe 94:807–814

    Article  PubMed  CAS  Google Scholar 

  • Gellrich NC, Schimming R, Zerfowski M, Eysel UT (2002) Quantification of histological changes after calibrated crush of the intraorbital optic nerve in rats. Br J Ophthalmol 86:233–237

    Article  PubMed  Google Scholar 

  • Greenberg MS (1997) Handbook of neurosurgery. Greenberg Graphics, Inc., Lakeland

    Google Scholar 

  • Guest J, Eleraky MA, Apostolides PJ, Dickman CA, Sonntag VK (2002) Traumatic central cord syndrome: results of surgical management. J Neurosurg 97:25–32

    PubMed  Google Scholar 

  • Gunnarsson T, Fehlings MG (2003) Acute neurosurgical management of traumatic brain injury and spinal cord injury. Curr Opin Neurol 16:717–723

    Article  PubMed  Google Scholar 

  • Heiduschka P, Fischer D, Thanos S (2005) Recovery of visual evoked potentials after regeneration of cut retinal ganglion cell axons within the ascending visual pathway in adult rats. Restor Neurol Neurosci 23:303–312

    PubMed  Google Scholar 

  • Huber AB, Schwab ME (2000) Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381:407–419

    Article  PubMed  CAS  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    PubMed  CAS  Google Scholar 

  • Lazarov-Spiegler O, Solomon AS, Zeev-Brann AB, Hirschberg DL, Lavie V, Schwartz M (1996) Transplantation of activated macrophages overcomes central nervous system regrowth failure. Faseb J 10:1296–1302

    PubMed  CAS  Google Scholar 

  • Levin LA, Joseph MP, Rizzo JF III, Lessell S (1994) Optic canal decompression in indirect optic nerve trauma. Ophthalmology 101:566–569

    PubMed  CAS  Google Scholar 

  • Levin LA, Beck RW, Joseph MP, Seiff S, Kraker R (1999) The treatment of traumatic optic neuropathy: the International Optic Nerve Trauma Study. Ophthalmology 106:1268–1277

    Article  PubMed  CAS  Google Scholar 

  • Lindå H, Piehl F, Dagerlind A, Verge VM, Arvidsson U, Cullheim S, Risling M, Ulfhake B, Hokfelt T (1992) Expression of GAP-43 mRNA in the adult mammalian spinal cord under normal conditions and after different types of lesions, with special reference to motoneurons. Exp Brain Res 91:284–295

    Article  PubMed  Google Scholar 

  • MacLaren RE (1998) Regeneration and transplantation of the optic nerve: developing a clinical strategy. Br J Ophthalmol 82:577–583

    Article  PubMed  CAS  Google Scholar 

  • MacLaren RE (1999) Re-establishment of visual circuitry after optic nerve regeneration. Eye 13:277–284

    PubMed  Google Scholar 

  • Mattsson P, Morgan BP, Svensson M (1998) Complement activation and CD59 expression in the motor facial nucleus following intracranial transection of the facial nerve in the adult rat. J Neuroimmunol 91:180–189

    Article  PubMed  CAS  Google Scholar 

  • Monsul NT, Geisendorfer AR, Han PJ, Banik R, Pearse ME, Skolasky RL Jr, Hoffman PN (2004) Intraocular injection of dibuturyl cyclic AMP promotes axon regeneration in rat optic nerve. Exp Neurol 186:124–133

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson M, Bellander B-M, Langmoen IA, Svensson M (2003) Complement activation following optic nerve crush in the adult rat. Journal of Neurotrauma 20:895–904

    Article  PubMed  Google Scholar 

  • Ohlsson M, Mattsson P, Svensson M (2004a) A temporal study of axonal degeneration and glial scar formation following a standardized crush injury of the optic nerve in the adult rat. Restor Neurol Neurosci 22:1–10

    PubMed  Google Scholar 

  • Ohlsson M, Mattsson P, Wamil BD, Hellerqvist CG, Svensson M (2004b) Macrophage stimulation using a group B-streptococcus exotoxin (CM101) leads to axonal regrowth in the injured optic nerve. Restor Neurol Neurosci 22:33–41

    PubMed  CAS  Google Scholar 

  • Ohlsson M, Westerlund U, Langmoen IA, Svensson M (2004c) Methylprednisolone treatment does not influence axonal regeneration or degeneration following optic nerve injury in the adult rat. J Neuro-Ophthalmol 24:11–18

    Article  Google Scholar 

  • Olson L (2002) Medicine: clearing a path for nerve growth. Nature 416:589–590

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G (1995) The rat nervous system. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Podhajsky RJ, Bidanset DJ, Caterson B, Blight AR (1997) A quantitative immunohistochemical study of the cellular response to crush injury in optic nerve. Exp Neurol 143:153–161

    Article  PubMed  CAS  Google Scholar 

  • Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751:37–46

    Article  PubMed  CAS  Google Scholar 

  • Thakar A, Mahapatra AK, Tandon DA (2003) Delayed optic nerve decompression for indirect optic nerve injury. Laryngoscope 113:112–119

    Article  PubMed  CAS  Google Scholar 

  • Thanos S, Naskar R, Heiduschka P (1997) Regenerating ganglion cell axons in the adult rat establish retinofugal topography and restore visual function. Exp Brain Res 114:483–491

    Article  PubMed  CAS  Google Scholar 

  • Ueda Y, Walker SA, Povlishock JT (2006) Perivascular nerve damage in the cerebral circulation following traumatic brain injury. Acta Neuropathol (Berl) 112:85–94

    Article  Google Scholar 

  • Wohlrab TM, Maas S, de Carpentier JP (2002) Surgical decompression in traumatic optic neuropathy. Acta Ophthalmol Scand 80:287–293

    Article  PubMed  Google Scholar 

  • Yang WG, Chen CT, Tsay PK, de Villa GH, Tsai YJ, Chen YR (2004) Outcome for traumatic optic neuropathy—surgical versus nonsurgical treatment. Ann Plast Surg 52:36–42

    Article  PubMed  Google Scholar 

  • Yoles E, Muller S, Schwartz M (1997) NMDA-receptor antagonist protects neurons from secondary degeneration after partial optic nerve crush. J Neurotrauma 14:665–675

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Mrs. Britt Meijer for excellent technical assistance and the Swedish Medical Research Council and Karolinska Institutet for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Ohlsson.

Additional information

Funding: Grants from Swedish Medical Research Council and Karolinska Institutet. Disclosure statement: No disclosure to be stated for the two authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlsson, M., Svensson, M. Early decompression of the injured optic nerve reduces axonal degeneration and improves functional outcome in the adult rat. Exp Brain Res 179, 121–130 (2007). https://doi.org/10.1007/s00221-006-0775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0775-1

Keywords

Navigation