Skip to main content

Surgical Methods in Postmetamorphic Xenopus laevis: Optic Nerve Crush Injury Model

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

Abstract

Many human optic neuropathies lead to crippling conditions resulting in partial or complete loss of vision. While the retina is made up of several different cell types, retinal ganglion cells (RGCs) are the only cell type connecting the eye to the brain. Optic nerve crush injuries, wherein RGC axons are damaged without severing the optic nerve sheath, can serve as a model for traumatic optical neuropathies as well as some progressive neuropathies such as glaucoma. In this chapter, we describe two different surgical methods for establishing an optic nerve crush (ONC) injury in the postmetamorphic frog, Xenopus laevis. Why use the frog as an animal model? Mammals lose the ability to regenerate damaged CNS neurons, but amphibians and fish retain the ability to regenerate new RGC bodies and regrow RGC axons following an injury. In addition to presenting two different surgical ONC injury methods, we highlight their advantages and disadvantages and discuss the distinctive characteristics of Xenopus laevis as an animal model for studying CNS regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dratviman-Storobinsky O, Hasanreisoglu M, Offen D et al (2008) Progressive damage along the optic nerve following induction of crush injury or rodent anterior ischemic optic neuropathy in transgenic mice. http://www.molvis.org/molvis/v14/a254/. Accessed 2 Mar 2021

  2. Whitworth GB, Misaghi BC, Rosenthal DM et al (2017) Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Dev Biol 426:360–373. https://doi.org/10.1016/j.ydbio.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  3. Phipps LS, Marshall L, Dorey K, Amaya E (2020) Model systems for regeneration: Xenopus. Development 147:dev180844. https://doi.org/10.1242/dev.180844

    Article  CAS  PubMed  Google Scholar 

  4. Belrose JL, Prasad A, Sammons MA et al (2020) Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons. BMC Genomics 21:540. https://doi.org/10.1186/s12864-020-06954-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Szaro BG, Loh YP, Hunt RK (1985) Specific changes in axonally transported proteins during regeneration of the frog (Xenopus laevis) optic nerve. J Neurosci 5:192–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao Y, Szaro BG (1994) The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis. J Comp Neurol 343:158–172. https://doi.org/10.1002/cne.903430112

    Article  CAS  PubMed  Google Scholar 

  7. Tang Z, Zhang S, Lee C et al (2011) An optic nerve crush injury murine model to study retinal ganglion cell survival. J Vis Exp 2685. https://doi.org/10.3791/2685

  8. Liu Q, Londraville RL (2003) Using the adult zebrafish visual system to study cadherin-2 expression during central nervous system regeneration. Methods Cell Sci 25:71–78. https://doi.org/10.1023/B:MICS.0000006854.18378.fc

    Article  PubMed  Google Scholar 

  9. Ananthakrishnan L, Szaro BG (2009) Transcriptional and translational dynamics of light neurofilament subunit RNAs during Xenopus laevis optic nerve regeneration. Brain Res 1250:27–40. https://doi.org/10.1016/j.brainres.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  10. Watson FL, Mills EA, Wang X et al (2012) Cell type-specific translational profiling in the Xenopus laevis retina. Dev Dyn Off Publ Am Assoc Anat 241:1960–1972. https://doi.org/10.1002/dvdy.23880

    Article  CAS  Google Scholar 

  11. McNamara S, Wlizla M, Horb ME (2018) Husbandry, general care, and transportation of Xenopus laevis and Xenopus tropicalis. In: Vleminckx K (ed) Xenopus. Springer, New York, pp 1–17

    Google Scholar 

Download references

Acknowledgments

Many thanks to Mr. Dave Pfaff and Cleveland Candle for their design help with Illustrator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona L. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Feidler, A.M., Nguyen, H.H.M., Watson, F.L. (2023). Surgical Methods in Postmetamorphic Xenopus laevis: Optic Nerve Crush Injury Model. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics