Skip to main content
Log in

Msplit(q) estimation: estimation of parameters in a multi split functional model of geodetic observations

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The method presented here assumes that a single observation can be identified with one of q functional models that compete with one another. The estimation method is based on the assumption that a theoretical quantity, called elementary split potential, can be assigned to each observation. Such quantity is referred to the theory of probability as well as to the theory of information. Parameters of the competitive functional models are estimated by maximizing the split potential globally over for the whole observation set. Additionally, such M split(q) estimates minimize the amount of information that could be provided by other estimates computed for the same observation set. The method is a certain kind of extension of the maximum likelihood method and if one considers the generalizations presented in the paper it can also be regarded as the development of M-estimation. Special attention is paid to the squared M split(q) estimation where the objective function is a squared one. If q = 1, then the squared M split(q) estimation is equivalent to the least squares method. The last part of the paper presents some numerical examples illustrating the properties of the squared M split(q) estimation as well as pointing at possible applications in geodesy and surveying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews DF (1974) A robust method for multiple linear regression. Technometrics 16: 523–531

    Article  Google Scholar 

  • Chang XW, Guo Y (2005) Huber’s M-estimation in relative GPS positioning: computational aspects. J Geod 79: 351–362

    Article  Google Scholar 

  • Götzelmann M, Keller W, Reubelt T (2006) Gross error compensation for gravity field analysis based on kinematic orbit data. J Geod 80: 184–198

    Article  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseuw PJ, Stahel WA (1986) Robust statistics. The approach based on influence functions. Wiley, New York

    Google Scholar 

  • Hodges JL Jr, Lehmann EL (1963) Estimates of location based on rank tests. Ann Math Stat 34: 598–611

    Article  Google Scholar 

  • Huang Y, Mertikas SP (1995) On the design of robust regression estimators. Manuscr Geod 20: 145–160

    Google Scholar 

  • Huber PJ (1964) Robust estimation of location parameter. Ann Math Stat 43(4): 1041–1067

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Book  Google Scholar 

  • Kadaj R (1988) Eine verallgemeinerte Klasse von Schätzverfahren mit praktischen Anwendungen. Zeitschrift für Vermessungswesen 113(4): 157–166

    Google Scholar 

  • Kaufman L, Rousseeuw PJ (1990) Finding groups in data. Wiley, New York

    Book  Google Scholar 

  • Koch KR (1996) Robuste Parameterschätzung. Allg Vermess Nach 103(1): 1–18

    Google Scholar 

  • Koch KR, Yang Y (1998) Robust Kalman filter for rank deficient observation models. J Geod 72: 436–441

    Article  Google Scholar 

  • Krarup T, Juhl J, Kubik K (1980) Gotterdammerung over least squares adjustment. Int Arch Photogramm 23 (B3) (Commiss III):369–378

  • Krarup T, Kubik K (1983) The Danish method; experience and philosophy. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften, München, Reihe A, Heft Nr 7: 131–134

    Google Scholar 

  • Kubáčkowá L, Kubáček L, Kukuča J (1987) Probability and statistics in geodesy and geophysics. Elsevier, Amsterdam

    Google Scholar 

  • Kubáčkowá L, Kubáček L (1991) Optimum processing of measurements from a group of instruments affected by drift. Manuscr Geod 16: 148–154

    Google Scholar 

  • Marshall J, Bethel J (1996) Basic concepts of L1 norm minimization for surveying applications. J Surv Eng 122(4): 168–180

    Article  Google Scholar 

  • Marshall J (2002) L1-norm pre analysis measures for geodetic networks. J Geod 76: 334–344

    Article  Google Scholar 

  • Rousseeuw PJ, Trauwaert E, Kaufman L (1995) Fuzzy claustering with high contrast. J Comput Appl Math 64: 81–90

    Article  Google Scholar 

  • Saleh J (2000) Robust estimation based on energy minimization principles. J Geod 74: 291–305

    Article  Google Scholar 

  • Schaffrin B (1985) On robust collocation. In: Sanso F (eds) Proc 1st Marussi Symp Math Geod, Milano, 1986, pp 343–361

  • Schaffrin B (1989) An alternative approach to robust collocation. Bull Géod 63: 395–404

    Article  Google Scholar 

  • Schaffrin B (1991) Generalized robustified Kalman filters for the integration of GPS and INS. Tech Rep 15, Geodetic Institute, Stuttgart University

  • Soto J, Aguiar MIV, Flores-Sintas A (2007) A fuzzy clustering application to precise orbit determination. J Comput Appl Math 204: 137–143

    Article  Google Scholar 

  • Teunissen PJG (1990) Nonlinear least squares. Manuscr Geod 15: 137–150

    Google Scholar 

  • Wiśniewski Z (1985) The effect of the asymmetry of geodetic observation error distribution on the results of adjustment by the least squares method. Polish Acad Sci Geod Cartogr 34(11): 11–21

    Google Scholar 

  • Wiśniewski Z (2009a) Estimation of parameters in a split functional model of geodetic observations (M split estimation). J Geod 83: 105–120

    Article  Google Scholar 

  • Wiśniewski Z (2009b) M split estimation. Part I: theoretical foundation. Polish Acad Sci Geod Cartogr 58: 3–21

    Google Scholar 

  • Wiśniewski Z (2009c) M split estimation. Part II: squared M split estimation and numerical examples. Polish Acad Sci Geod Cartogr 58: 23–48

    Google Scholar 

  • Xu P (1989) On robust estimation with correlated observations. Bull Géod 63: 237–252

    Article  Google Scholar 

  • Xu P (2002) A hybrid global optimization method: the one-dimensional case. J Comput Appl Math 147: 301–314

    Article  Google Scholar 

  • Xu P (2003) A hybrid global optimization method: the multi-dimensional case. J Comput Appl Math 155: 423–446

    Google Scholar 

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79: 146–159

    Article  Google Scholar 

  • Yang Y (1991) Robust Bayesian estimation. Bull Géod 65: 145–150

    Article  Google Scholar 

  • Yang Y (1992) Robustifying collocation. Manuscr Geod 17: 21–28

    Google Scholar 

  • Yang Y (1994) Robust estimation for dependent observations. Manuscr Geod 19: 10–17

    Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geod 73: 268–274

    Article  Google Scholar 

  • Yang Y, Cheng MK, Shum CK, Tapley BD (1999) Robust estimation of systematic errors of satellite laser range. J Geod 73: 345–349

    Article  Google Scholar 

  • Yang Y, He H, Xu G (2001) Adaptively robust filtering for kinematic geodetic positioning. J Geod 75: 106–109

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust estimation for correlated observations based on bifactor equivalent weights. J Geod 76: 353–358

    Article  Google Scholar 

  • Yang Y, Zhang S (2005) Adaptive fitting of systematic errors in navigation. J Geod 79: 43–49

    Article  Google Scholar 

  • Zhong D (1997) Robust estimation and optimal selection of polynomial parameters for the interpolation of GPS geoid heights. J Geod 71: 552–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Wiśniewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiśniewski, Z. Msplit(q) estimation: estimation of parameters in a multi split functional model of geodetic observations. J Geod 84, 355–372 (2010). https://doi.org/10.1007/s00190-010-0373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-010-0373-7

Keywords

Navigation