Skip to main content
Log in

Gross Error Compensation for Gravity Field Analysis Based on Kinematic Orbit Data

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austen G, Grafarend EW, Reubelt T (2002) Analysis of the Earth’s gravitational field from semi-continuous ephemeris of a low Earth orbiting GPS-tracked satellite of type CHAMP, GRACE or GOCE. In: Ádám J, Schwarz K-P (eds) Vistas for geodesy in the new millennium International Association of Geodesy Symposia 125. Springer, Berlin Heidelberg New York

  • Beaton A, Tukey J (1974) The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data. Technometrics 16: 147–192

    Article  Google Scholar 

  • Caspary W (1988) Fehlerverteilungen, Methode der kleinsten Quadrate und robuste Alternativen. Z Vermess 113(3):123–133

    Google Scholar 

  • Chang XW, Guo Y (2005) Huber’s M-estimation in relative GPS positioning: computational aspects. J Geod 79(6–7):351–362. DOI 10.1007/s00190-005-0473-y

    Article  Google Scholar 

  • Ditmar P, van Eck van der Sluijs AA (2004) A technique for modelling the Earth’s gravity field on the basis of satellite accelerations. J Geod 78(1–2):12–33. DOI 10.1007/s00190-003-0362-1

  • Földvary L, Švehla D, Gerlach C, Wermuth M, Gruber T, Rummel R Rothacher M, Frommknecht B, Peters T, Steigenberger P (2005) Gravity model TUM-2sp based on the energy balance approach and kinematic CHAMP orbits. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observations with CHAMP – results from three years in orbit. Springer, Berlin Heidelberg New York, pp 13–18

    Chapter  Google Scholar 

  • Gerlach C, Sneeuw N, Visser P, Švehla D (2003) CHAMP gravity field recovery with the energy balance approach: first results. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin Heidelberg New York, pp 134–139

    Google Scholar 

  • Hampel FR (1974) The influence curve and its role in robust estimation. J Am Stat Assoc 62:1179–1186

    Google Scholar 

  • Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73–101

    Article  Google Scholar 

  • Huber PJ (1981) Robust statistics. Wiley, New York

    Google Scholar 

  • Ilk KH, Mayer-Gürr T, Feuchtinger M (2005) Gravity field recovery by analysis of short arcs of CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observations with CHAMP – results from three years in orbit. Springer, Berlin Heidelberg New York, pp 25–30

    Google Scholar 

  • Kargoll B (2005). Comparison of some robust parameter estimation techniques for outlier analysis applied to simulated GOCE mission data. In: Jekeli C, Bastos L, Fernandes J (eds) gravity, geoid and space missions. International Association of Geodesy Symposia 129. Springer, Berlin Heidelberg New York

  • Keller W (2004) Wavelets in geodesy and geodynamics. Walter de Gruyter Verlag, Berlin

    Google Scholar 

  • Kern M, Allesch M (2003) GOCE DAPC Graz. WP Ia-3: pre-processing. Final Report, Phase Ia, Technical University of Graz

  • Kern M, Preimesberger T, Allesch M, Pail R, Bouman J, Koop R (2005) Outlier detection algorithms and their performance in GOCE gravity field processing. J Geod 78(9):509–519. DOI 10.1007/s00190-004-0419-9

    Article  Google Scholar 

  • Koch KR (1996) Robuste Parameterschaetzung. Allg Vermess Nachricht 103(1):1–18

    Google Scholar 

  • Lemoine FG et al (1988) The development of the Joint NASA GSFC and National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA technical report, NASA/TP-1996\8-206861

  • Reigber C, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu SY (2004) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39(1):1–10

    Article  Google Scholar 

  • Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer KH, König R, Foerste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Perosanz F (2005) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observations with CHAMP – results from three years in orbit. Springer, Berlin Heidelberg New York, pp 25–30

    Chapter  Google Scholar 

  • Reubelt T, Austen G, Grafarend EW (2003a) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 77(5–6):257–278. DOI 10.1007/s00190-003-0322-9

    Google Scholar 

  • Reubelt T, Austen G, Grafarend EW (2003b) Space gravity spectroscopy – determination of the Earth’s gravitational field by means of Newton interpolated LEO ephemeris; case studies on dynamic (CHAMP rapid science orbits) and kinematic orbits. Adv Geosci 1:127–135

    Article  Google Scholar 

  • Scales JA, Gersztenkorn A (1988) Robust methods in inverse theory. Inverse Probl 4:1071–1091

    Article  Google Scholar 

  • Schlossmacher EJ (1973) An iterative technique for absolute deviations curve fitting. J Am Stat Assoc 68:857–859

    Article  Google Scholar 

  • Schmidt M (2001) Grundprinzipien der Wavelet-Analyse und Anwendungen in der Geodäsie. Shaker Verlag, Aachen

    Google Scholar 

  • Somogyi J, Zavoti J (1993) Robust estimation with iteratively reweighted least-squares method. Acta Geod Geoph Mont Hung 28(3–4):413–420

    Google Scholar 

  • Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of low Earth orbiters. Adv Geosci 1:47–56

    Article  Google Scholar 

  • Švehla D, Rothacher M (2004) Two years of CHAMP kinematic orbits for geosciences. EGU, 1st General Assembly, Nice, France. Geophysical Research Abstracts, European Geophysical Society 6. ISSN:1029-7006

  • Xu P (1989) On robust estimation with correlated observations. Bull Géod 63:237–252

    Article  Google Scholar 

  • Xu P (2005) Sign-constrained robust least squares, subjective breakdown point and the effect of weights of observations on robustness. J Geod 79(1–3):146–159. DOI 10.1007/s00190-005-0454-1

    Article  Google Scholar 

  • Yang Y, Song L, Xu T (2002) Robust estimator for correlated observations based on bifactor equivalent weights. J Geod 76(6–7):353–358. DOI 10.1007/s00190-002-0256-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götzelmann, M., Keller, W. & Reubelt, T. Gross Error Compensation for Gravity Field Analysis Based on Kinematic Orbit Data. J Geodesy 80, 184–198 (2006). https://doi.org/10.1007/s00190-006-0061-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-006-0061-9

Keywords

Navigation