Skip to main content

Advertisement

Log in

Flupirtine, a re-discovered drug, revisited

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Flupirtine was developed long before KV7 (KCNQ) channels were known. However, it was clear from the beginning that flupirtine is neither an opioid nor a nonsteroidal anti-inflammatory analgesic. Its unique muscle relaxing activity was discovered by serendipity. In the meantime, broad and intensive research has resulted in a partial clarification of its mode of action. Flupirtine is the first therapeutically used KV7 channel activator with additional GABAAergic mechanisms and thus the first representative of a novel class of analgesics. The presently accepted main mode of its action, potassium KV7 (KCNQ) channel activation, opens a series of further therapeutic possibilities. One of them has now been realized: its back-up compound, the bioisostere retigabine, has been approved for the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jakovlev V, Sofia RD, Achterrath-Tuckermann U, von Schlichtegroll A, Thiemer K. Untersuchungen zur pharmakologischen Wirkung von Flupirtin, einem strukturell neuartigen Analgetikum. Arzneimittelforschung [The pharmacologic effect of flupirtine, a structurally new analgesic]. Arzneimittelforschung. 1985;35:30–43 (in German).

    Google Scholar 

  2. Gordon R, Sofia RD, Diamantis W. Effect of flupirtine maleate on the nociceptive pathway, EEG, evoked potentials and polysynaptic reflexes in laboratory animals. Postgrad Med J. 1987;63(Suppl 3):49–55.

    PubMed  CAS  Google Scholar 

  3. Carlsson KH, Jurna I. Depression by flupirtine, a novel analgesic agent, of motor and sensory responses of the nociceptive system in the rat spinal cord. Eur J Pharmacol. 1987;143:89–99.

    Article  PubMed  CAS  Google Scholar 

  4. Bleyer H, Carlsson KH, Erkel HJ, Jurna I. Flupirtine depresses nociceptive activity evoked in rat thalamus. Eur J Pharmacol. 1988;151:259–65.

    Article  PubMed  CAS  Google Scholar 

  5. Nickel B, Herz A, Jakovlev V, Tibes U. Untersuchungen zum Wirkmechanismus des Analgetikums Flupirtin [Mechanism of action of the analgesic flupirtine]. Arzneimittelforschung. 1985;35:1402–9 (in German).

    Google Scholar 

  6. Nickel B, Borbe HO, Szelenyi I. Investigations with the novel non-opioid analgesic flupirtine in regard to possible benzodiazepine-like abuse inducing potential. Arzneimittelforschung. 1990;40:905–8.

    PubMed  CAS  Google Scholar 

  7. Darius H, Schrör K. The action of flupirtine on prostaglandin formation and platelet aggregation in vitro. Arzneimittelforschung. 1985;35:55–9.

    PubMed  CAS  Google Scholar 

  8. Yeung SY, Greenwood IA. Electrophysiological and functional effects of the KCNQ channel blocker XE991 on murine portal vein smooth muscle cells. Br J Pharmacol. 2005;146:585–95.

    Article  PubMed  CAS  Google Scholar 

  9. Mani BK, Brueggemann LI, Cribbs LL, Byron KL. Activation of vascular KCNQ (Kv7) potassium channels reverses spasmogen-induced constrictor responses in rat basilar artery. Br J Pharmacol. 2011;164:237–49.

    Article  PubMed  CAS  Google Scholar 

  10. Joshi S, Sedivy V, Hodyc D, Herget J, Gurney AM. KCNQ modulators reveal a key role for KCNQ potassium channels in regulating the tone of rat pulmonary artery smooth muscle. J Pharmacol Exp Ther. 2009;329:368–76.

    Article  PubMed  CAS  Google Scholar 

  11. Mackie AR, Brueggemann LI, Henderson KK, Shiels AJ, Cribbs LL, Scrogin KE, Byron KL. Vascular KCNQ potassium channels as novel targets for the control of mesenteric artery constriction by vasopressin, based on studies in single cells, pressurized arteries, and in vivo measurements of mesenteric vascular resistance. J Pharmacol Exp Ther. 2008;325:475–83.

    Article  PubMed  CAS  Google Scholar 

  12. Szelenyi I, Nickel B. Putative site(s) and mechanism(s) of action of flupirtine, a novel analgesic compound. Postgrad Med J. 1987;63(Suppl 3):57–60.

    PubMed  CAS  Google Scholar 

  13. Szelenyi I, Nickel B, Borbe HO, Brune K. Mode of antinociceptive action of flupirtine in the rat. Br J Pharmacol. 1989;97:835–42.

    Article  PubMed  CAS  Google Scholar 

  14. Nickel B, Shandra A, Godlevsky L, Mazarati A, Kupferberg H, Szelenyi I. Antiepileptic effects of a new drug: D-20443. 20th Int Epilepsy Congress, Oslo, 13–16 August 1993. Epilepsia. 1993;34(Suppl. 2):95.

    Google Scholar 

  15. Aghajanian GK, VanderMaelen CP. Alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science. 1982;215:1394–6.

    Google Scholar 

  16. Jakob R, Krieglstein J. Flupirtine activates an inwardly rectifying potassium current in hippocampal neurons. Naunyn-Schmied Arch Pharmacol. 1995;351:R162.

    Google Scholar 

  17. Jakob R, Krieglstein J. Influence of flupirtine on a G-protein coupled inwardly rectifying potassium current in hippocampal neurones. Br J Pharmacol. 1997;122:1333–8.

    Article  PubMed  CAS  Google Scholar 

  18. North RA. Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Br J Pharmacol. 1989;98:13–28.

    Article  PubMed  CAS  Google Scholar 

  19. Ocaña M, Del Pozo E, Baeyens JM. ATP-dependent K+ channel blockers antagonize morphine- but not U-504,88H-induced antinociception. Eur J Pharmacol. 1993;230:203–7.

    Google Scholar 

  20. Ocaña M, Baeyens JM. Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists. Br J Pharmacol. 1993;110:1049–54.

    Article  PubMed  Google Scholar 

  21. Andrade R, Aghajanian GK. Opiate- and alpha 2-adrenoceptor-induced hyperpolarizations of locus ceruleus neurons in brain slices: reversal by cyclic adenosine 3’:5′-monophosphate analogues. J Neurosci. 1985;5:2359–64.

    PubMed  CAS  Google Scholar 

  22. Kornhuber J, Bleich S, Wiltfang J, Maler M, Parsons CG. Flupirtine shows functional NMDA receptor antagonism by enhancing Mg2+ block via activation of voltage independent potassium channels. Rapid communication. J Neural Transm. 1999;106:857–67.

    Article  PubMed  CAS  Google Scholar 

  23. Crozier RA, Ajit SK, Kaftan EJ, Pausch MH. MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci. 2007;27:4492–6.

    Article  PubMed  CAS  Google Scholar 

  24. Klinger F, Geier P, Dorostkar MM, Chandaka GK, Yousuf A, Salzer I, Kubista H, Boehm S. Concomitant facilitation of GABA(A) receptors and K(V) 7 channels by the non-opioid analgesic flupirtine. Br J Pharmacol. 2012;166:1631–42.

    Article  PubMed  CAS  Google Scholar 

  25. Ilyin VI, Carlin KP, Hodges DD, Robledo S, Woodward RM. Flupirtine—a positive modulator of heteromeric KCNQ2/Q3 channels. Neurosci. Meet. Program No. 758.10, July 10, 2002 (Abstract).

  26. Martire M, Castaldo P, D’Amico M, Preziosi P, Annunziato L, Taglialatela M. M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci. 2004;24:592–7.

    Article  PubMed  CAS  Google Scholar 

  27. Wladyka CL, Kunze DL. KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons. J Physiol. 2006;575:175–89.

    Article  PubMed  CAS  Google Scholar 

  28. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45.

    Article  PubMed  CAS  Google Scholar 

  29. Löscher W, Fredow G, Ganter M. Comparison of pharmacodynamic effects of the non-competitive NMDA receptor antagonists MK-801 and ketamine in pigs. Eur J Pharmacol. 1991;192:377–82.

    Article  PubMed  Google Scholar 

  30. Tricklebank MD, Singh L, Oles RJ, Preston C, Iversen SD. The behavioural effects of MK-801: a comparison with antagonists acting non-competitively and competitively at the NMDA receptor. Eur J Pharmacol. 1989;167:127–35.

    Article  PubMed  CAS  Google Scholar 

  31. Harish S, Bhuvana K, Bengalorkar GM, Kumar T. Flupirtine: clinical pharmacology. J Anaesthesiol Clin Pharmacol. 2012;28:172–7.

    Article  PubMed  CAS  Google Scholar 

  32. Osborne NN, Schwarz M, Pergande G. Protection of rabbit retina from ischemic injury by flupirtine. Invest Ophthalmol Vis Sci. 1996;1996(37):274–80.

    Google Scholar 

  33. Osborne NN, Cazevieille C, Wood JP, Nash MS, Pergande G, Block F, Kosinski C, Schwarz M. Flupirtine, a nonopioid centrally acting analgesic, acts as an NMDA antagonist. Gen Pharmacol. 1998;30:255–63.

    Article  PubMed  CAS  Google Scholar 

  34. Perovic S, Schleger C, Pergande G, Iskric S, Ushijima H, Rytik P, Müller WE. The triaminopyridine flupirtine prevents cell death in rat cortical cells induced by N-methyl-D-aspartate and gp120 of HIV-1. Eur J Pharmacol. 1994;288:27–33.

    Article  PubMed  CAS  Google Scholar 

  35. Osborne NN, Pergande G, Block F, Schwarz M. Immunohistochemical evidence for flupirtine acting as an antagonist on the N-methyl-d-aspartate and homocysteic acid-induced release of GABA in the rabbit retina. Brain Res. 1994;667:291–4.

    Article  PubMed  CAS  Google Scholar 

  36. Lorenz B, Schlüter T, Bohnensack R, Pergande G, Müller WE. Effect of flupirtine on cell death of human umbilical vein endothelial cells induced by reactive oxygen species. Biochem Pharmacol. 1998;56:1615–24.

    Article  PubMed  CAS  Google Scholar 

  37. Müller WE, Laplanche JL, Ushijima H, Schröder HC. Novel approaches in diagnosis and therapy of Creutzfeldt-Jakob disease. Mech Ageing Dev. 2000;116:193–218.

    Article  PubMed  Google Scholar 

  38. Schröder HC, Müller WE. Neuroprotective effect of flupirtine in prion disease. Drugs Today (Barc). 2002;38:49–58.

    Article  Google Scholar 

  39. Malan TP, Mata HP, Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology. 2002;96:1161–7.

    Article  PubMed  CAS  Google Scholar 

  40. Knabl J, Witschi R, Hösl K, Reinold H, Zeilhofer UB, Ahmadi S, Brockhaus J, Sergejeva M, Hess A, Brune K, Fritschy JM, Rudolph U, Möhler H, Zeilhofer HU. Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature. 2008;451:330–4.

    Article  PubMed  CAS  Google Scholar 

  41. Tucker AP, Mezzatesta J, Nadeson R, Goodchild CS. Intrathecal midazolam II: combination with intrathecal fentanyl for labor pain. Anesth Analg. 2004;98:1521–7.

    Article  PubMed  CAS  Google Scholar 

  42. Witschi R, Punnakkal P, Paul J, Walczak JS, Cervero F, Fritschy JM, Kuner R, Keist R, Rudolph U, Zeilhofer HU. Presynaptic alpha2-GABAA receptors in primary afferent depolarization and spinal pain control. J Neurosci. 2011;31:8134–42.

    Article  PubMed  CAS  Google Scholar 

  43. Wienrich M, Szelenyi I. The muscle relaxant effect of flupirtine—indications from electrophysiological studies (abstract). Soc Neurosci. 1991;Part 2:537.5(1341).

    Google Scholar 

  44. Wienrich M, Szelenyi I. Der Mechanismus der muskelrelaxierenden Wirkung von Flupirtin—erste Hinweise aus elektrophysiologischen Untersuchungen (abstract). Der Schmerz. 1991;5:161(H 2.5).

  45. Weiser T, Nickel B, Szelenyi I, Wienrich M. In-vivo and in vitro findings about the muscle relaxing properties of flupirtine. Arch Pharmacol. 1992; 346(Suppl 1):R22 (P27).

    Google Scholar 

  46. Popovici F, Dorostkar M, Boehm S. The non-opioid analgesic flupirtine is a modulator of GABAA receptors involved in pain sensation (abstract). BMC Pharmacol. 2008;8(Suppl 1):A14.

    Article  Google Scholar 

  47. Hummel T, Friedmann T, Pauli E, Niebch G, Borbe HO, Kobal G. Dose-related analgesic effects of flupirtine. Br J Clin Pharmacol. 1991;32:69–76.

    Article  PubMed  CAS  Google Scholar 

  48. Nickel B, Kolasiewicz W, Szelenyi I. Quantification of rigidity and tremor activity in rats by using a new device and its validation by different classes of drugs. Arzneimittelforschung. 1997;47:1081–6.

    PubMed  CAS  Google Scholar 

  49. Szelenyi I, Nickel B. Pharmacological profile of flupirtine, a novel centrally acting, non-opioid analgesic drug. Agents Actions. 1991;32(Suppl):119–23.

    CAS  Google Scholar 

  50. Emig P, Nickel B, Weischer CH, Szelenyi I, Engel J. Neue zentralanalgetisch wirksame Triaminopyridine. Arzneimittelforschung. 1993;43:627–31.

    PubMed  CAS  Google Scholar 

  51. Nickel B, Jakovlev V, Szelenyi I. Einfluss von Flupirtin, verschiedener Analgetika und Muskelrelaxantien auf den Skelettmuskeltonus wacher Ratten. Arzneimittelforschung. 1990;40:909–11.

    PubMed  CAS  Google Scholar 

  52. Schwarz M, Block F, Pergande G. N-methyl-D-aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats. NeuroReport. 1994;5:1981–4.

    Article  PubMed  CAS  Google Scholar 

  53. Schwarz M, Schmitt T, Pergande G, Block F. N-methyl-d-aspartate and alpha 2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. Eur J Pharmacol. 1995;276:247–55.

    Article  PubMed  CAS  Google Scholar 

  54. Roura-Ferrer M, Solé L, Martínez-Mármol R, Villalonga N, Felipe A. Skeletal muscle Kv7 (KCNQ) channels in myoblast differentiation and proliferation. Biochem Biophys Res Commun. 2008;369:1094–7.

    Article  PubMed  CAS  Google Scholar 

  55. Iannotti FA, Panza E, Barrese V, Viggiano D, Soldovieri MV, Taglialatela M. Expression, localization, and pharmacological role of Kv7 potassium channels in skeletal muscle proliferation, differentiation, and survival after myotoxic insults. J Pharmacol Exp Ther. 2010;332:811–20.

    Article  PubMed  CAS  Google Scholar 

  56. Wieland SJ, Gong QH. Modulation of a potassium conductance in developing skeletal muscle. Am J Physiol. 1995;268:C490–5.

    PubMed  CAS  Google Scholar 

  57. Rundfeldt C, Netzer R. Investigations into the mechanism of action of the new anticonvulsant retigabine. Interaction with GABAergic and glutamatergic neurotransmission and with voltage gated ion channels. Arzneimittelforschung. 2000;50:1063–70.

    PubMed  CAS  Google Scholar 

  58. Su TR, Zei WS, Su CC, Hsiao G, Lin MJ. The effects of the KCNQ openers retigabine and flupirtine on myotonia in mammalian skeletal muscle induced by a chloride channel blocker. Evid Based Complement Alternat Med. 2012;2012:803082.

    PubMed  Google Scholar 

  59. Richter A, Sander SE, Rundfeldt C. Antidystonic effects of Kv7 (KCNQ) channel openers in the dtsz mutant, an animal model of primary paroxysmal dystonia. Br J Pharmacol. 2006;149:747–53.

    Article  PubMed  CAS  Google Scholar 

  60. Nickel B, Nagymajtenyi L, Desi I, Szelenyi I. Flupirtine a centrally acting analgesic with muscle relaxing activity (abstract). Scand J Rheumatol. 1992;21(s94):30.

    Google Scholar 

  61. Rose K, Ooi L, Dalle C, Robertson B, Wood IC, Gamper N. Transcriptional repression of the M channel subunit Kv7.2 in chronic nerve injury. Pain. 2011;152:742–54.

    Article  PubMed  CAS  Google Scholar 

  62. Passmore GM, Selyanko AA, Mistry M, Al-Qatari M, Marsh SJ, Matthews EA, Dickenson AH, Brown TA, Burbidge SA, Main M, Brown DA. KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci. 2003;23:7227–36.

    PubMed  CAS  Google Scholar 

  63. Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol. 2003;460:109–16.

    Article  PubMed  CAS  Google Scholar 

  64. Mishra S, Choudhary P, Joshi S, Bhatnagar S. Successful use of flupirtine in refractory neuropathic pain due to small fiber neuropathy. Am J Hosp Palliat Care. 2013;30:91–93.

    Google Scholar 

  65. Sittl R, Carr RW, Schwarz JR, Grafe P. The Kv7 potassium channel activator flupirtine affects clinical excitability parameters of myelinated axons in isolated rat sural nerve. J Peripher Nerv Syst. 2010;15:63–72.

    Article  PubMed  CAS  Google Scholar 

  66. Sittl R, Carr RW, Fleckenstein J, Grafe P. Enhancement of axonal potassium conductance reduces nerve hyperexcitability in an in vitro model of oxaliplatin-induced acute neuropathy. Neurotoxicology. 2010;31:694–700.

    Article  PubMed  CAS  Google Scholar 

  67. Nielsen AN, Mathiesen C, Blackburn-Munro G. Pharmacological characterisation of acid-induced allodynia in rats. Eur J Pharmacol. 2004;487:93–103.

    Article  PubMed  CAS  Google Scholar 

  68. Wörz R. Flupirtine in chronic myofacial pain conditions. Fortschr Med. 1991;109:158–60 (in German).

    Google Scholar 

  69. Stoll AL. Fibromyalgia symptoms relieved by flupirtine: an open-label case series. Psychosomatics. 2000;41:371–2.

    Article  PubMed  CAS  Google Scholar 

  70. Block F, Pergande G, Schwarz M. Flupirtine reduces functional deficits and neuronal damage after global ischemia in rats. Brain Res. 1997;754:279–84.

    Article  PubMed  CAS  Google Scholar 

  71. Perovic S, Bohm M, Meesters E, Meinhardt A, Pergande G, Muller WE. Pharmacological intervention in age-associated brain disorders by flupirtine: Alzheimer’s and prion diseases. Mech Ageing Dev. 1998;101:1–19.

    Article  PubMed  CAS  Google Scholar 

  72. Sättler MB, Williams SK, Neusch C, Otto M, Pehlke JR, Bähr M, Diem R. Flupirtine as neuroprotective add-on therapy in autoimmune optic neuritis. Am J Pathol. 2008;173:1496–507.

    Article  PubMed  Google Scholar 

  73. Michel M, Radziszewski P, Falconer C, Marschall-Kehrel D, Rundfeldt C, Vanhoutte F. The centrally acting ion channel modulator flupirtine improves bladder function in animal models and patients with overactive bladder syndrome. 2006. https://www.icsoffice.org/Abstracts/Publish/46/000406.pdf. Accessed 8 Aug 2012.

  74. McCallum LA, Pierce SL, England SK, Greenwood IA, Tribe RM. The contribution of Kv7 channels to pregnant mouse and human myometrial contractility. J Cell Mol Med. 2011;15:577–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Dr Berthold Renner for valuable and constructive comments and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Szelenyi.

Additional information

Responsible Editor: Michael Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szelenyi, I. Flupirtine, a re-discovered drug, revisited. Inflamm. Res. 62, 251–258 (2013). https://doi.org/10.1007/s00011-013-0592-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0592-5

Keywords

Navigation