Skip to main content
Log in

Very-long-chain fatty acids from lower organism

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The qualitative occurrence and quantitative proportion of very-long-chain fatty acids (above C22). mainly in lower organisms and briefly in higher plants and animals is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K., Tamai Y.: Simultaneous determination of methyl esters of α-hydroxy- and nonhydroxy fatty acids from brain cerebroside by fused-siliea capillary gas chromatography.J. Chromatogr.232, 400–405 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Aghawal V.P., Lessire R., Stumpf K.P.: Biosynthesis of very long chain fatty acids in microsomes from epidermal cellsof Allium porrum L.Arch. Biochem. Biophys.230, 580–589 (1984).

    Article  Google Scholar 

  • Andersson B.A.: Mass spectrometry of fatty acid pyrrolidides.Prog. Chem. Fats Lipids16, 279–308 (1978).

    Article  CAS  Google Scholar 

  • Antoku Y., Sakai T., Goto I., Iwashita H., Kuboiwa Y.: Adrenoleukodystrophy: Abnormality of very long-chain fatty acids in erythrocyte membrane phospholipids.Neurology34, 1499 to 1501 (1984).

    Google Scholar 

  • Antoku Y., Sakai T., Goto I., Katafuchi Y., Sato H., Iwashita H., Kuroiwa Y.: Adrenoleukodystrophy: Fatty acid analysis of total glycerophospholipids in erythrocyte membranes.Acta Neurol. Scand.72, 193–197 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Asselineau C., Asselineau J., Ryhage R., Srällberg-Stenhagen S., Stenhagen E.: Synthesis of (−)-methyl-2d, 4d, 6D-trimethylnonacosanoate and identification of C32 mycocerotic acid as a 2, 4, 6, 8-tetramethyloctacosanoic acid.Acta Chem. Scand.13, 822–824 (1959).

    Google Scholar 

  • Asselineau O.P., Lacave C.S., Montrosier H.L., Promé J.C.: Relation structurales entre les acides mycoliques insatures et syntheses parMycobaclerium phlei. Implications metaboliques.Eur. J. Biochem.14, 406–410 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Asselineau C., Montrosier H., Promé J.C.: Présence d’acides polyinsaturés dans une bactérie: isolement, a partir des lipides deMycobaderium phlei, d’acide hexatriacontapentaene-4, 8, 12, 16. 20-oique et la d’acides analogues.Europ. J. Biochem.10, 580–584 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Aveldano M.I., VanRollins M., Horrocks L.A.: Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography.J. Lipid Res.24, 83–93 (1983.

    PubMed  CAS  Google Scholar 

  • Ayanoglu E., Popov S., Kornprobst J.M., Aboud-Bichara A., Djerassi C: Phospholipid studies of marine organisms V. New α-methoxy acids fromHigginsia tethyoides.Lipids18, 830–836 (1983).

    Article  CAS  Google Scholar 

  • Ayanoglu E., Walkup R.D., Sica D., Djerassi C.: Phospholipid studies of marine organisms. III. New phospholipid fatty acids fromPetrosia ficiformis.Lipids17, 617–625 (1982).

    Article  CAS  Google Scholar 

  • Bakkeren J.A.J.M., Monnens L.A.H., Trubels J.M.F., Mass J.M.: Serum very long chain fatty acid pattern in Zellweger syndrome.Clin. Chim. Acta138, 325–331 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Baraud J., Maurice A., Napias C.: Composition et repartition des lipides au sein des cellules deSaccharomyoes cerevisiae.Bull. Soc. Chim. Biol.52, 421–432 (1970).

    PubMed  CAS  Google Scholar 

  • Bergmann I.W., Swipt A.N.: Contributions to the study of marine products. XXX. Component acids of lipids of sponges. I.J. Org. Chem.16, 1206–1221 (1951).

    Article  CAS  Google Scholar 

  • Bussell N.E., Gboss A., Miller R.A.: Analysis of free fatty acids on the fingertips by high performance liquid chromatography.J. Liquid Chromatogr.2, 337–1365 (1979).

    Google Scholar 

  • Campbell I.M., Naworal J.: Composition of the saturated and monosaturated fatty acids ofMycobaderium phlei.J. Lipid Res.10, 593–598 (1969).

    PubMed  CAS  Google Scholar 

  • Cervilla M., Puzo G.: Determination of double bond position in monounsaturated fatty acids by mass analyzed ion kinetic energy spectrometry/collision induced dissociation after chemical ionization of their ammo alcohol derivatives.Anal. Chem.55, 2100–2103 (1983).

    Article  CAS  Google Scholar 

  • Dasgupta A., Ayanoglu E., Djerassi C.: Phospholipid studies of marine organisms: New branched fatty acids fromStrongylophora durissima.Lipids19, 768–776 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky V.M.: Fatty acids composition of class:Desmospongiae freshwater sponges. I. GenusLubormirskia. Chim. Prirod. Soed. 311–513 (1981a).

  • Dembitsky V.M.: Fatty acids composition of class:Desmospongiae freshwater sponges. II. GenusSwartschewshia andBaicalospongia. Chim. Prirod. Soed. 513–515 (1981b).

  • Dembitsky V.M., Nebylitsyn B.D.: Lipids of marine origin. II. Comparative analysis of phospholipid and fatty acid composition of marine sponge from Japan Sea.Bioorgan. Khim.6, 1542–1548 (1980).

    Google Scholar 

  • Dembitsky V.M., Svetashev V.I., Vaskovsky V.E.: Lipids of marine origin. I. Unusual lipid fromHalichondria panicea sponge.Bioorgan. Khim.3, 930–933 (1977).

    Google Scholar 

  • Dimroth P., Guchhait R.B., Stoll E., Lane M.D.: Enzymatic carboxylation of biotin: Molecular and catalytic properties of a component enzyme of acetyl CoA carboxvlase.Proc. Nat. Acad. Sci.67, 1353–1360 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Dormaar J.F.: Aliphatic carboxvlic acids in chernozemic soils.Can. J. Soil Sci.63, 487–489 (1982).

    Article  Google Scholar 

  • Douglas A.G., Doukaghi-Zadeh K., Eglinton G.: The fatty acids of the algaBotryococcus braunii.Phytochemistry8, 285–293 (1969).

    Article  CAS  Google Scholar 

  • Downing D.T., Kranz Z.H., Lamberton J.A., Murray K.F., Redcliffe A.H.: Studies in waxes. XVIII. Beeswax: A spectroscopic and gas Chromatographic examination.Austral. J. Chem.14, 253–263 (1961).

    Article  CAS  Google Scholar 

  • Epstein W.W., Aoyagi E., Jennings P.W.: Metabolites of fungi. The fatty materials ofFomes igniarius.Comp. Biochem. Physiol.18, 225–229 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Ferguson J.C.: The annual cycle of fatty acid composition in a starfish.Comp. Biochem. Physiol.54B, 249–252 (1976).

    Google Scholar 

  • Fisher D.J., Holloway P.J., Richmond D.V.: Fatty acid and hydrocarbon constituents of the surface and wall lipids of some fungal spores.J. Gen. Microbiol.72, 71–78 (1972).

    CAS  Google Scholar 

  • Gillan F.T., McFadden G.I., Wetherbee R., Johns R.B.: Sterols and fatty acids of an antarctic sea ice diatomStauroneis amphioxys.Phytochemistry20, 1935–1937 (1981).

    Article  Google Scholar 

  • Govaerts L., Bakkeren J., Monnens L., Maas J., Trijbels F., Kleijer W.: Disturbed very long chain (C24-C26) fatty acid pattern in fibroblasts of patients with Zellweger’s syndrome.J. Inher. Metab. Dis.8, 5–8 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Grogan W.M.: Metabolism of arachidonate in rat testis: Characterization of 26–30 carbon polyenoic acids.Lipids19, 341–346 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Guchhait R.B., Moss J., Sokolski W., Lane M.D.: The carboxyl transferase component of acetyl CoA carboxylase: Structural evidence for intersubnuit translocation of the biotin prosthetic group.Proc. Nat. Acad. Sci.68, 653–657 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Harvey D.J., Tiffany J.M.: Identification of meibomian gland lipids by gas chromatographymass spectrometry: Application to the meibomian lipids of the mouse.J. Chromatogr.301 173–187 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Holloway P.J.: Intracuticular lipids of spinach leaves.Phytochemistry13, 2201–2207 (1974).

    Article  CAS  Google Scholar 

  • Hung J.G.C., Walker R.W.: Unsaturated fatty acids ofMycobacteria.Lipids5, 720–722 (1970).

    Article  PubMed  CAS  Google Scholar 

  • IUPAC Tentative Rules for the Nomenclature of Organic Chemistry. Section E: Fundamental Stereochemistry.Biochim. Biophys. Acta208, 1–44 (1970).

    Google Scholar 

  • Jefferts E., Morales R. W., Litchfield C.: Occurrence of cis-5,cis-9-hexacosadienoic and cis-5-cis-9-cis-19-hexacosatrienoic acids in the marine spongeMicrociona polifera.Lipids9, 244–247 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Ketola M., Eckman R., Luomala E.: Compositional features of waxy materials in Finnish peat.Proc. Int. Peat Symp. 221‖238 (1981);

  • Ketola M., Eckman R., Luomala E.: Compositional features of waxy materials in Finnish peatChem. Abstr.97, 75339 (1982).

    Google Scholar 

  • Kikuchi S., Kusaka T.: Isolation and partial characterization of very-long-chain fatty acid desaturation system from the cytosol ofMycobacterium smegmatis.J. Biochem.99, 723–731 (1986).

    PubMed  CAS  Google Scholar 

  • Kishimoto Y., Radin N.S.: Structures of the normal unsaturated fatty acids of brain sphingolipids.J. Lipid. Res.4, 437–443 (1963).

    PubMed  CAS  Google Scholar 

  • Kobayashi T., Katayama M., Suzuki S., Tomoda H., Goto I., Kuroiwa Y.: Adrenoleukodystrophy: Detection of increased very long chain fatty acids by high-performance liquid chromatography.J. Neurol.230, 209–215 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Lankelma J., Ayanoglu E., Djerassi C.: Double-bond location in long chain polyunsaturated fatty acids by chemical ionization-mass spectrometry.Lipids18, 853–858 (1983).

    Article  CAS  Google Scholar 

  • Ligthelm S.P., Horn D.H.S., Schwartz H.M., von Holdt M.M.: Chemical study of the fruits of three South AfricanXimenia species, with special reference to the kernel oils.J. Sci. Food Agr.5, 281–288 (1954).

    Article  CAS  Google Scholar 

  • Linko R.R., Karinkanta H.: Fatty acids of long chain length in baltic herring lipids.J. Amer. Oil Chem. Soc.47, 42–46 (1970).

    Article  CAS  Google Scholar 

  • Litchfield C.:Tropaeolum speciosum seed fat: A rich source of cis-15-tetracosenoic and cis-17-hexacosenoic acids.Lipids5, 114–146 (1970).

    Article  Google Scholar 

  • Litchfield C., Greenberg A.J., Noto G., Morales R.W.: Unsually high levels of C24–30 fatty acids in sponges of the classDemospongiae.Lipids11, 567–570 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Litchfield C., Marcantonio E.E.: Occurrence of 5, 9, 19-octacosatrienoic, 5, 9-hexacosadienoic and 17-hexacosenoic acids in the marine spongeXestospongia halichondroides.Lipids13, 199–202 (1978).

    Article  CAS  Google Scholar 

  • Litchfield C., Tyszkiewicz J., Dato V.: 5, 9, 23-Triacontatrienoie acid, principal fatty acid of the marine spongeChondrilla nucula.Lipids15, 200–202 (1980).

    Article  CAS  Google Scholar 

  • Litchfield C., Tyszkiewicz J., Marcantonio E.E., Noto G.: 15, 18, 21, 24-Triacontatetraenoic and 15, 18, 21, 24, 27-triacontapentaenoic acids: New C30 fatty acids from the marine spongeCliona celata.Lipids14, 619–622 (1979).

    Article  CAS  Google Scholar 

  • Maskarinec M.P., Alexander G., Novotný M.: Analysis of the acidic fraction of marijuana smoke condensates by capilary gas chromatography—mass spectrometry.J. Chromatogr.126, 559–568 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Miller R.W., Earle F.R., Wolf I.A.: Search for new industrial oils. XIII. Oils from 102 species ofCruciferae, J. Amer. Oil Chem. Soc.42, 817–821 (1965).

    Article  CAS  Google Scholar 

  • Morales R.W., Litchfield C.: Unsual C24, C25, C26 and C27 polyunsaturated fatty acids of the marine spongeMicrociona prolifera.Biochim. Biophys. Acta431, 206–216 (1976).

    PubMed  CAS  Google Scholar 

  • Morales R.W., Litchfield C.: Incorporation of l-14C-acetate into C26 fatty acids of the marine spongeMicrociona prolifera.Lipids12, 570–576 (1977).

    Article  CAS  Google Scholar 

  • Murata M., Sato N., Takahashi N.: Very long chain saturated fatty acids in phosphatidylserine from higher plant tissues.Biochim. Biophys. Acta795, 147–150 (1984).

    CAS  Google Scholar 

  • Neidlein R., Koch E.: Isolierung und Struktur der Inhaltsstoffe vonCecropia adenopus Marticus.Arch. Pharm.313, 199–207 (1980).

    Article  CAS  Google Scholar 

  • Nichols P.D., Mayberr W.R., Antworth C.P., White D.C.: Determination of monounsaturated double bond position and geometry in the cellular fatty acids of the pathogenic bacteriumFranciscella tularensis.J. Clin. Microbiol.21, 738–740 (1985).

    PubMed  CAS  Google Scholar 

  • Nicolaides N., Ansari M.N.A.: Fatty acids of unsual double-bond positions and chain lenghts found in rat skin surface lipids.Lipids3, 404–410 (1969).

    Google Scholar 

  • Nicolaides N., Santos E.C., Papadakis K.: Double-bond patterns of fatty acids and alcohols in steer and human meibomian gland lipids.Lipids19, 264–277 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Nordby H.E., Nagy S.: Fatty acid composition of sterol esters fromCitrus sinensis. C. paradisi, C. limon, Aurantifolia andC. limettioides sacs.Phytochemistry13. 443–452 (1974).

    Article  CAS  Google Scholar 

  • Nurminen T., Suomalainen H.: Occurrence of long chain fatty acids and glycolipids in the cell envelope fractions of baker’s yeast.Biochem. J.125, 963–969 (1971).

    PubMed  CAS  Google Scholar 

  • Popov A., Stefanov K.: Untersuchungen über die Zusammensetzung der Wachsbodensätze und des Sonnenblumenölwachses.Fette Scifen Anstrichmittel.70, 234–238 (1968).

    Article  CAS  Google Scholar 

  • Poulos A., Sharp P.: Plasma and skin fibroblast C26 fatty acids in infantile Refsum’s disease.Neurology34, 1606–1609 (1984).

    PubMed  CAS  Google Scholar 

  • Poulos A., Sharp P., Singh H., Johnson D., Fellenberg A., Pollard A.: Detection of a homologous series of C26-C38 polyenoic fatty acids in the brain of patients without peroxisemes (Zellweger’s syndrome).Biochem. J.235, 607–610 (1986).

    PubMed  CAS  Google Scholar 

  • Prostenik M., Kljaic K., Weinert M.: Occurrence of (+)-erythro-2,3-dihydroxyhexacosanoic acid in cerebrin from yeastSaccharomyces cerevisiae.Lipids8, 325–326 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N., Sathyamoorthy N., Takayama K.: Biosynthesis of C30 to C56 fatty acids by an extract ofMycobacterium tuberculosis H37Ra.J. Bacteriol.157, 46–52 (1984).

    PubMed  CAS  Google Scholar 

  • Qureshi N., Takayama K., Jordi H. C., Schnoes H. K.: Characterization of the purified components of a new homologous series of α-mycolic acids fromMycobacterium tuberculosi H37Ra.J. Biol. Chem.153, 5411–5417 (1978).

    Google Scholar 

  • Qureshi N., Takayama K., Schnoes H.K.: Purification of C30–56 fatty acids fromMycobacterium tuberculosis H37Ra.J. Biol. Chem.255, 182–189 (1980).

    PubMed  CAS  Google Scholar 

  • Ratledge C.: The physiology of theMycobacteria.Adv. Microb. Physiol.13, 115–244 (1976).

    PubMed  CAS  Google Scholar 

  • Rainwater D.L., Kolattttkudy P.E.: Fatty acid biosynthesis inMycobacterium tuberculosis var.bovis bacillus Calmete-Guérin.J. Biol. Chem.260, 616–623 (1985).

    PubMed  CAS  Google Scholar 

  • Řezanka T., Klánová K., Podojil M., Vaněk Z.: Fatty acids ofStreptomyces cinnamonensis, producer of monensin.Folia Microbiol.29, 217–221 (1984).

    Article  Google Scholar 

  • Řezanka T., Podojil M.: The very long chain fatty acids of the green algaChlorella kessleri.Lipids19, 472–473 (1984).

    Article  Google Scholar 

  • Řezanka T., Vokoun J., Slavíček J., Podojil M.: Determination of fatty acids in algae by capillary gas chromatography—mass spectrometry.J. Chromatogr.268, 71–78 (1983).

    Article  Google Scholar 

  • Rosenberg A.: A comparision of lipid patterns in photosynthesizing and nonphotosynthesizing cells ofEuglena gracilis.Biochemistry2, 1148–1154 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal M.D., Hill, J.R.: Human vascular endothelial cells synthesize and release 24- and 26-carbon polyunsaturated fatty acids.Biochim. Biophys. Acta795, 171–178 (1984).

    PubMed  CAS  Google Scholar 

  • Shaw R.: The polyunsaturated fatty acids of microorganisms.Adv. Lipid Res.4, 107–174 (1966).

    PubMed  CAS  Google Scholar 

  • Schmidt J., Nam V.V., Lischwski M., Van Pliet H., Kuhnt C., Günter A.: Long chain fatty acid esters of 3α-hydroxylup-20(29)-ene-23,28-dioic acid and other triterpenoid constituents from the bark ofSchefflera octophylla.Phytochemistry23, 2081–2082 (1984).

    Article  CAS  Google Scholar 

  • Stránský K., Kubelka V., Streibl M.: On natural waxes. XX. Free acids of the wax of the honeybee (Apis mellifera L.).Coll. Czech. Chem. Comm.37, 2451–2463 (1972).

    Google Scholar 

  • Takayama K., Quereshi N., Jordi H.C., Schnoes H.K.: Purification of mono and diunsaturated C22–C47 fatty acids fromMycobacterium tuverculosis H37Ra as their p-bromophenacyl esters by high performance liquid chromatography, p. 375–394 inBiological/Biomedical Applications of Liquid Chromatography (ed. G.L. Hawk), vol. 12. Marcel Dekker, New York 1979.

    Google Scholar 

  • Takayama K., Qureshi N., Schnoes H.K.: Isolation and characterization of the monounsaturated long chain fatty acids ofMycobacterium tuberculosis.Lipids13, 575–579 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Thiele O.W.:Lipide, Isoprenoide mit Steroiden, p. 16–196. Georg Thieme Verlag, Stuttgart 1979.

    Google Scholar 

  • Uchida K.: Occurrence of saturated and mono-unsaturated fatty acids with unsually long chains (C20 –C30) inLactobacillus heterochiochii, an alcoholophilic bacterium.Biochim. Biophys. Acta348, 86–93 (1974).

    PubMed  CAS  Google Scholar 

  • Uutter M.F.:The Enzymes5, 336 (1961); cited after T.E. Barman:Enzyme Handbook, Vol. II, p. 912. Springer-Verlag, Berlin-Heidelberg-New York 1969.

    Google Scholar 

  • Vagelos P.R.:The Enzymes8A, (1973a); cited after T.E. Barman:Enzyme Handbook, Suppl. I, p. 194. Springer-Verlag, Berlin-Heidelberg-New York 1974.

  • Vagelos P.R.:The Enzymes8A. 188 (1973b); cited after T.E. Barman:Enzyme Handbook, Suppl. I, p. 197. Springer-Verlag, Berlin-Heidelberg-New York 1974.

    Google Scholar 

  • Volkman J.K., Smith D.J., Eglinton G., Forsberg T.E.V., Corner E.D.S.: Sterol and fatty acid composition of four marineHaptophycean algae.J. Mar. Biol. Ass. U.K.61, 509–527 (1981).

    Article  CAS  Google Scholar 

  • Walker R.W., Barakat H., Hung J.G.C.: The positional distribution of fatty acids in the phospholipids and triglycerides ofMycobacterium smegmatis andM. bovis BCG.Lipids5, 684–691 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Walkup R.D., Jamieson G.C., Ratcliff M.R., Djerassi C.: Phospholipid studies of marine organisms. 2. Phospholipids, phospholipid-bound fatty acids and free sterols of the spongeAplysina fistularis (Pallas) forma fulva (Pallas) (=Verongia thiona). Isolation and structure elucidation of unprecedented branched fatty acids.Lipids16, 631–646 (1981).

    Article  CAS  Google Scholar 

  • Wassef M.K.: Fungal lipids.Adv. Lipid Res.15, 159–232 (1977).

    CAS  Google Scholar 

  • Welch J.W., Burlingame A.L.: Very long chain fatty acids in yeast.J. Bacterial.115, 464–466 (1973).

    CAS  Google Scholar 

  • Wilkinson D.I.: Monounsaturated fatty acids of mouse skin surface lipids.Lipids5, 148–149 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Zviagintzeva I.S., Pitriuk I.A., Babyeva I.P., Ruban E.L.: Fatty acid composition of lipids in soil and epiphytic yeasts.Mikrobiologiya44, 625–631 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Řezanka, T., Cudlín, J. & Podojil, M. Very-long-chain fatty acids from lower organism. Folia Microbiol 32, 149–176 (1987). https://doi.org/10.1007/BF02883244

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02883244

Keywords

Navigation