Skip to main content

Oxidative Stress and Oxylipins in Plant-Fungus Interaction

  • Chapter
  • First Online:
Biocommunication of Fungi

Abstract

Considering the huge quantity of studies related to the implication of oxidative stress in the biological processes, we could say that reactive oxygen species (ROS) are actually “everywhere” around us and play different important roles in the life of all organisms. Reactive species can affect cell physiology both in a quantitative and in a qualitative manner, that is, not only the amount of ROS accumulated in the cell, but also the kind of ROS produced affect cell biology. Indeed, ROS are formed at the plant-fungus interface during their interaction and they influence both the plant and the pathogen by altering the respective metabolism. Here we hypothesise that peroxisomes play an important role in both challenging organisms in modulating the ROS signal and transform it in oxylipins “words”, e.g. jasmonates for plants and hormone-like substances (i.e. psi factors) for fungi. Plant secretes oxylipins to alter fungal metabolism and differentiation, and the fungus use these lipid signals for switching secondary metabolism on. On the other hand, fungi are able to secrete Mn-lipoxygenase and Jasmonates into the plant cell for driving the host metabolism toward their own parasitic needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 25:111–118

    Article  CAS  Google Scholar 

  • Aist JR, Brushnell WR (1991) Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance. In: Cole GT, Hoch HC (eds) The fungal spore and disease interaction in plants and animals. Plenum Press, New York, pp 321–345

    Google Scholar 

  • Andreou AZ, Feussner I (2009) Lipoxygenases – structure and reaction mechanism. Phytochemistry 70:1485–1503

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Banerjee AK, Mandal A, Chanda D, Chakraborti S (2003) Oxidant, antioxidant and physical exercise. Mol Cell Biochem 253:307–312

    Article  PubMed  CAS  Google Scholar 

  • Baptista P, Martins A, Pais MS, Tavares RM, Lino-Neto T (2007) Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 17:185–193

    Article  PubMed  CAS  Google Scholar 

  • Barnett P, Tabak HF, Hettema EH (2000) Nuclear hormone receptors arose from pre-existing protein modules during evolution. Trends Biochem Sci 25:227–228

    Article  PubMed  CAS  Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci 6:284–286

    Article  PubMed  CAS  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  PubMed  CAS  Google Scholar 

  • Bedard K, Lardy B, Krause KH (2007) NOX family NADPH oxidases: not just in mammals. Biochimie 89:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Bosch VDH, Schutgens RBH, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197

    Article  PubMed  Google Scholar 

  • Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol 67(2):378–391

    Article  PubMed  CAS  Google Scholar 

  • Burow GB, Nesbitt TC, Dunlap J, Keller NP (1997) Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant Microbe Interact 10:380–387

    Article  CAS  Google Scholar 

  • Castoria R, Fanelli C, Fabbri AA, Passi S (1992) Metabolism of arachidonic acid involved in its eliciting activity in potato tuber. Physiol Mol Plant Pathol 41:127–137

    Article  CAS  Google Scholar 

  • Champe SP, el-Zayat AA (1989) Isolation of a sexual sporulation hormone from Aspergillus nidulans. J Bacteriol 171:3982–3988

    PubMed  CAS  Google Scholar 

  • Chi M-H, Park S-Y, Kim S, Lee Y-H (2009) A novel pathogenicity gene is required in the Rice Blast Fungus to suppress the basal defences of the host. PLoS Pathog 5:e1000401

    Article  PubMed  CAS  Google Scholar 

  • Christensen SA, Kolomiets MV (2010) The lipid language of plant-fungal interactions. Fungal Genet Biol 48(1):4–14

    Article  PubMed  CAS  Google Scholar 

  • Christensen MJ, Bennett RJ, Schmid J (2002) Growth of Epichloe/Neotyphodium and p-endophytes in leaves of Lolium and Festuca grasses. Mycol Res 106:93–106

    Article  Google Scholar 

  • Corpas FJ, Barroso JB, Sandalio LM, DiStefano S, Palma JM, Lupianez JA, del Rio LA (1998) A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem J 330:777–784

    PubMed  CAS  Google Scholar 

  • Corpas FJ, Barroso JB, del Rìo LA (2001) Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci 6:145–150

    Article  PubMed  CAS  Google Scholar 

  • Cristea M, Osbourn AE, Oliw EH (2003) Linoleate diol synthase of the rice blast fungus Magnaporthe grisea. Lipids 38:1275–1280

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shenggiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Gomez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    Article  PubMed  Google Scholar 

  • del Rio LA, Corpas FJ, Sandalio LM, Palma JM, Barroso JB (2003) Plant peroxisomes, reactive oxygen metabolism and nitric oxide. IUBMB Life 55:71–81

    Article  PubMed  Google Scholar 

  • Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9(4):435–445

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140(6):935–950

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Harrison MJ, Lamb CJ (1994) Early events in the activation of plant defence responses. Annu Rev Phytopathol 32:479–501

    Article  CAS  Google Scholar 

  • Egan MJ, Wang Z-Y, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104(28):11772–11777

    Article  PubMed  CAS  Google Scholar 

  • Fabbri AA, Fanelli C, Panfili G, Passi S, Fasella P (1983) Lipoperoxidation and aflatoxin biosynthesis by Aspergillus parasiticus and A. flavus. J Gen Microbiol 129:3447–3452

    CAS  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2000) Redox-dependent signal transduction. FEBS Lett 476:52–54

    Article  PubMed  CAS  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  PubMed  CAS  Google Scholar 

  • Fréalle E, Noel C, Viscogliosi E, Camus D, Dei-Cas E, Delhaes L (2005) Manganese superoxide dismutase in pathogenic fungi: an issue with pathophysiological and phylogenetic involvements. FEMS Immunol Med Microbiol 45:411–422

    Article  PubMed  CAS  Google Scholar 

  • Fujino G, Noguchi T, Takeda K, Ichijo H (2006) Thioredoxin and protein kinases in redox signaling. Semin Cancer Biol 16:427–435

    Article  PubMed  CAS  Google Scholar 

  • Gao XQ, Kolomiets MV (2009) Host-derived lipids and oxylipins are crucial signals in modulating mycotoxin production by fungi. Toxin Rev 28:79–88

    Article  CAS  Google Scholar 

  • Gao XQ, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22(2):222–231

    Article  PubMed  CAS  Google Scholar 

  • Garscha U, Jerneren F, Chung DW, Keller NP, Hamberg M, Oliw EH (2007) Identification of dioxygenases required for Aspergillus development. J Biol Chem 282:34707–34718

    Article  PubMed  CAS  Google Scholar 

  • Geiser DM, Timberlake WE, Arnold ML (1996) Loss of meiosis in Aspergillus. Mol Biol Evol 13:809–817

    Article  PubMed  CAS  Google Scholar 

  • Georgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G (2006) Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 46:1–22

    Article  CAS  Google Scholar 

  • Gessler NN, Averyanov AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemistry (Moscow) 72(10):1091–1109

    Article  CAS  Google Scholar 

  • Gfeller A, Liechti R, Farmer EE (2010) Arabidopsis jasmonate signaling pathway. Sci Signal 3(109):cm4

    Article  PubMed  CAS  Google Scholar 

  • Göbel C, Feussner I (2009) Methods for the analysis of oxylipins in plants. Phytochemistry 70:1485–1503

    Article  PubMed  CAS  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease. Plant Physiol 124:21–29

    Article  PubMed  CAS  Google Scholar 

  • Grechkin A (1998) Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res 37:317–352

    Article  PubMed  CAS  Google Scholar 

  • Haedens V, Malagnac F, Silar P (2005) Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina. Fungal Genet Biol 42:564–577

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, p 851

    Google Scholar 

  • Hayashi M, Toriyama K, Kondo M, Kato A, Mano S, De Bellis L, Hayashi-Ishimaru Y, Yamaguchi K, Hayashi H, Nishimura M (2000) Functional transformation of plant peroxisomes. Cell Biochem Biophys 32:295–304

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome: biochemical and physiological characterization of cbpmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem 276(17):14279–14288

    PubMed  CAS  Google Scholar 

  • Hornsten L, Su C, Osbourn AE, Garosi P, Hellman U, Wernstedt C, Oliw EH (1999) Cloning of linoleate diol synthase reveals homology with prostaglandin H synthases. J Biol Chem 274:28219–28224

    Article  PubMed  CAS  Google Scholar 

  • Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74(18):5674–5685

    Article  PubMed  CAS  Google Scholar 

  • Hountondji FCC, Hanna R, Sabelis MW (2006) Does methyl salicylate, a component of herbivore-induced plant odour, promote sporulation of the mite-pathogenic fungus Neozygites tanajoae? Exp Appl Acarol 39:63–74

    Article  PubMed  CAS  Google Scholar 

  • Hückelhoven R, Kogel K-H (2003) Reactive oxygen intermediates in plant microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Huckelhoven R, Fodor J, Preis C, Kogel K-H (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with H2O2 but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Igamberdiev AU, Lea PJ (2002) The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 60:651

    Article  PubMed  CAS  Google Scholar 

  • Jayashree T, Subramanyam C (2000) Oxidative stress as a prerequisite for aflatoxin production by Aspergillus parasiticus. Free Radic Biol Med 29:981–985

    Article  PubMed  CAS  Google Scholar 

  • Kanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52(2):195–204

    Article  CAS  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B, Mullineaux PM (2003) Light perception in plant disease defence signaling. Curr Opin Plant Biol 6:390–396

    Article  PubMed  CAS  Google Scholar 

  • Kiel JAKW, van den Berg MA, Fusetti F, Poolman B, Bovenberg RAL, Veenhuis M, van der Klei IJ (2009) Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells. Funct Integr Genomics 9:167–184

    Article  PubMed  CAS  Google Scholar 

  • Kim MC, Panstruga R, Elliott C, Muller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P (2002) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature 416:447–451

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Campbell BC, Yu J, Mahoney N, Chan KL, Molyneux RJ, Bhatnagar D, Cleveland TE (2005) Examination of fungal stress response genes using Saccharomyces cerevisiae as a model system: targeting genes affecting aflatoxin biosynthesis by Aspergillus flavus link. Appl Microbiol Biotechnol 67:807–815

    Article  PubMed  CAS  Google Scholar 

  • Kotchoni SW, Gachomo EW (2006) The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31(3):389–404

    Article  PubMed  CAS  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  PubMed  CAS  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD (2004) Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    Article  PubMed  CAS  Google Scholar 

  • Lara-Ortiz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NOXA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255

    Article  PubMed  CAS  Google Scholar 

  • Lee JR, Park S-C, Kim M-H, Jung JH, Shin MR, Lee DH, Cheon MG, Park Y, Hahm KS, Lee SY (2007) Antifungal activity of rice Pex5p, a receptor for peroxisomal matrix proteins. Biochem Biophys Res Commun 359:941–946

    Article  PubMed  CAS  Google Scholar 

  • Lemmens M, Sholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head resistance in wheat. Mol Plant Microbe Interact 18(12):1318–1324

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon RA, Lamb CJ (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Lillehoj EB (1991) Aflatoxin: an ecologically elicited genetic activation signal. In: Smith JE, Henderson RS (eds) Mycotoxins and animal foods. CRC Press, Boca Raton, pp 2–30

    Google Scholar 

  • Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974

    Article  PubMed  CAS  Google Scholar 

  • Lledias F, Rangel P, Hansberg W (1999) Singlet oxygen is part of a hyperoxidant state generated during spore germination. Free Radic Biol Med 26:1396–1404

    Article  PubMed  CAS  Google Scholar 

  • López-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    Article  PubMed  Google Scholar 

  • Maggio-Hall LA, Keller NP (2004) Mitochondrial β-oxidation in Aspergillus nidulans. Mol Microbiol 54(5):1173–1185

    Article  PubMed  CAS  Google Scholar 

  • Maggio-Hall LA, Wilson RA, Keller NP (2005) Fundamental contribution of beta-oxidation to polyketide mycotoxin production in planta. Mol Plant Microbe Interact 18(8):783–793

    Article  PubMed  CAS  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath CM (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. Plant J 29:257–268

    Article  PubMed  CAS  Google Scholar 

  • Mita G, Fasano P, De Domenico S, Perrone G, Epifani F, Iannacone R, Casey R, Santino A (2007) 9-lipoxygenase metabolism is involved in the almond/Aspergillus carbonarius interaction. J Exp Bot 58(7):1803–1811

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) The reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    Article  PubMed  CAS  Google Scholar 

  • Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517

    Article  PubMed  CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  PubMed  CAS  Google Scholar 

  • Moye-Rowley WS (2003) Regulation of transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2:381–389

    Article  PubMed  CAS  Google Scholar 

  • Nathues E, Joshi S, Tenberge KB, von den Driesch M, Oeser B, Baumer N, Mihlan M, Tudzynski P (2004) CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol Plant Microbe Interact 17:383–393

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    Article  PubMed  CAS  Google Scholar 

  • Nila AG, Sandalio LM, Lòpez MG, Gòmez M, del Rìo L, Gòmez-Lim MA (2006) Expression of a peroxisome proliferator-activated receptor gene (xPPARα) from Xenopus laevis in tobacco (Nicotiana tabacum) plants. Planta 224:569–581

    Article  PubMed  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210

    Article  PubMed  CAS  Google Scholar 

  • Nyathi Y, Baker A (2006) Plant peroxisomes as a source of signaling molecules. Biochim Biophys Acta 1763:1478–1495

    Article  PubMed  CAS  Google Scholar 

  • Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723

    Article  PubMed  CAS  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  PubMed  CAS  Google Scholar 

  • Oliw EH (2002) Plant and fungal lipoxygenases. Prostaglandins Other Lipid Mediat 68–69:313–323

    Article  PubMed  Google Scholar 

  • Overmyer K, Brosché M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8(7):335–342

    Article  PubMed  CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2009) Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology. Proteomics 9:2301–2312

    Article  PubMed  CAS  Google Scholar 

  • Passi S, Ricci R, Aleo E, Cocchi M (2005) Oxidative stress, aging and aging-related diseases. Progr Nutr 7:3–22

    CAS  Google Scholar 

  • Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P (2002) The barley MLO modulator of defence and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085

    Article  PubMed  CAS  Google Scholar 

  • Pinkus R, Weiner LM, Daniel V (1996) Role of oxidants and antioxidants in the induction of AP-1, NF-kB, and glutathione S-transferase gene expression. J Biol Chem 271:13422–13429

    Article  PubMed  CAS  Google Scholar 

  • Ponts N, Couedelo L, Pinson-Gadais L, Verdal-Bonnin M-N, Barreau C, Richard-Forget F (2009) Fusarium response to oxidative stress by H2O2 is trichothecene chemotype-dependent. FEMS Microbiol Lett 293(2):255–262

    Article  PubMed  CAS  Google Scholar 

  • Ramu SK, Peng H-M, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant Microbe Interact 15:522–528

    Article  PubMed  CAS  Google Scholar 

  • Reverberi M, Zjalic S, Punelli F, Ricelli A, Fabbri AA, Fanelli C (2007) Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit Contam 24(10):1070–1075

    Article  PubMed  CAS  Google Scholar 

  • Reverberi M, Zjalic S, Ricelli A, Punelli F, Camera E, Fabbri C, Picardo M, Fanelli C, Fabbri AA (2008) Modulation of antioxidant defence in Aspergillus parasiticus is involved in aflatoxin biosynthesis: a role for the ApyapA gene. Eukaryot Cell 7(6):988–1000

    Article  PubMed  CAS  Google Scholar 

  • Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA (2010) Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol 85:1935–1946

    Article  PubMed  CAS  Google Scholar 

  • Salzer P, Corbiere H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Sandalio LM, López-Huertas E, Bueno P, del Río LA (1997) Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res 26:187–194

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Pratt DA, Porter NA, Brash AR (2007) Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol 14:473–488

    Article  PubMed  CAS  Google Scholar 

  • Shetty NP, Kristensen BK, Newman M-A, Møller K, Gregersen PL, Jørgensen HJL (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol 62:333–346

    Article  CAS  Google Scholar 

  • Shinogi T, Suzuki T, Kurihara T, Narusaka Y, Park P (2003) Microscopic detection of reactive oxygen species generation in the compatible and incompatible interactions of Alternaria alternata Japanese pear pathotype and host plants. J Gen Plant Pathol 69:7–16

    Article  CAS  Google Scholar 

  • Silar P (2005) Peroxide accumulation and cell death in filamentous fungi induced by contact with a contestant. Mycol Res 109:137–149

    Article  PubMed  CAS  Google Scholar 

  • Stumpe M, Feussner I (2006) Formation of oxylipins by CYP74 enzymes. Phytochem Rev 5:347–357

    Article  CAS  Google Scholar 

  • Sumimoto H (2008) Structure, regulation and evolution of NOX-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

    Article  PubMed  CAS  Google Scholar 

  • Tan YY, Spiering MJ, Scott V, Lane GA, Christensen MJ, Schmid J (2001) In planta regulation of extension of an endophytic fungus and maintenance of high metabolic rates in its mycelium in the absence of apical extension. Appl Environ Microbiol 67:5377–5383

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungusperennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  PubMed  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plantarum 128:414–429

    Article  CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  PubMed  CAS  Google Scholar 

  • Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118

    Article  PubMed  CAS  Google Scholar 

  • van Roermund CWT, Tabak HF, van den Berg M, Wanders RJA, Hettema EH (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150(3):489–498

    Article  PubMed  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7(5):217–224

    Article  PubMed  CAS  Google Scholar 

  • Willekens H, Inzé D, Montagu M, Camp W (1995) Catalases in plants. Mol Breed 1:207–228

    Article  CAS  Google Scholar 

  • Yager LN (1992) Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. In: Bennett JW, Klich MA (eds) Aspergillus – biology and industrial applications. Butterworth-Heinemann, Boston, pp 19–41

    Google Scholar 

  • Zuo X, Wu Y, Morris JS, Stimmel JB, Leesnitzer LM, Fischer SM, Lippman SM, Shureiqi I (2006) Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene 23–25(8):1225–1241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Reverberi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reverberi, M., Fabbri, A.A., Fanelli, C. (2012). Oxidative Stress and Oxylipins in Plant-Fungus Interaction. In: Witzany, G. (eds) Biocommunication of Fungi. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4264-2_18

Download citation

Publish with us

Policies and ethics