Skip to main content
Log in

The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Availability of complete Arabidopsis(Arabidopsis thaliana) and rice(Oryza sativa) genome sequences, together with molecular recourses of functional genomics and proteomics have revolutionized our understanding of reactive oxygen species (ROS) signalling network mediating disease resistance in plants. So far, ROS have been associated with aging, cellular and molecular alteration in animal and plant cells. Recently, concluding evidences suggest that ROS network is essential to induce disease resistance and even to mediate resistance to multiple stresses in plants. ROS are obligatory by-products emerging as a result of normal metabolic reactions. They have the potential to be both beneficial and harmful to cellular metabolism. Their dual effects on metabolic reactions are dosage specific. In this review we focus our attention on cellular ROS level to trigger beneficial effects on plant cells responding to pathogen attack. By exploring the research related contributions coupled with data of targeted gene disruption, and RNA interference approaches, we show here that ROS are ubiquitous molecules of redox-pathways that play a crucial role in plant defence mechanism. The molecular prerequisites of ROS network to activate plant defence system in response to pathogen infections are here underlined. Bioinformatic tools are now available to scientists for high throughput analysis of cellular metabolisms. These tools are used to illustrate crucial ROS-related genes that are involved in the defence mechanism of plants. The review describes also the emerging findings of ROS network pathways to modulate multiple stress resistance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

APX:

ascorbate peroxidase

GSH:

glutathione

HR:

hypersensitive response

JA:

jasmonic acid

KO:

knowck-out

MAPKs:

mitogen-activated protein kinase

Ni-NOR:

nicotina-nitric oxide reductase

NO:

nitric oxide

NOS:

nitric oxide synthase

NR:

nitrate reductase

PAL:

phenylalanine ammonia lyase

PCD:

programmed cell death

PMPs:

peroxisomal membrane polypeptides

PR-1:

pathogenesis-related 1

RIPs:

ribosome-inactivating proteins

ROS:

reactive oxygen species

SA:

salicylic acid

SAR:

systemic acquired resistance

SOD:

superoxide dismutase

tAPX:

thylakoidal ascorbate peroxidase

TMV:

tobacco mosaic virus

References

  • Aist J R and Brushnell W R 1991 Invasion of plants by powdery mildew fungi, and cellular mechanisms of resistance; in:The fungal spore and disease interaction in plants and animals (eds) G T Cole and H C Hoch (New York: Plenum Press) pp 321–345

    Google Scholar 

  • Allen R 1995 Dissection of oxidative stress tolerance using transgenic plants;Plant Physiol. 107 1049–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez M E, Pennell R I, Meijer P -J, Ishikawa A, Dixon R A and Lamb C 1998 Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity;Cell 92 773–784

    Article  CAS  PubMed  Google Scholar 

  • Apel K and Hirt H 2004 Reactive oxygen species: Metabolism, oxidative stress, and signal transduction;Annu. Rev. Plant Biol. 55 373–399

    Article  CAS  PubMed  Google Scholar 

  • Asada K 1999 The water-water cycle in chloroplasts: Scavenging of active oxygen and dissipation of excess photons;Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 601–639

    Article  CAS  PubMed  Google Scholar 

  • Asada K and Takahashi M 1987 Production and scavenging of active oxygen in photosynthesis; inPhotoinhibition (eds) D J Kyle, C B Osmond and C J Arntzen (Amsterdam: Elsevier) pp 227–287

    Google Scholar 

  • Banerjee A K, Mandal A, Chanda D and Chakraborti S 2003 Oxidant, antioxidant and physical exercise;Mol. Cell. Biochem. 253 307–312

    Article  CAS  PubMed  Google Scholar 

  • Bartels D 2001 Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerence?;Trends Plant Sci. 6 284–286

    Article  CAS  PubMed  Google Scholar 

  • Beers E P and McDowell J M 2001 Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues;Curr. Opin. Plant Biol. 4 561–567

    Article  CAS  PubMed  Google Scholar 

  • Bestwick C S, Brown I R, Bennett M H R and Mansfield J W 1997 Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells toPseudomonas syringae pv.phaseolicola;Plant Cell 9 209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolwell G P 1999 Role of active oxygen species and NO in plant defence responses;Curr. Opin. Plant Biol. 2 287–294

    Article  CAS  PubMed  Google Scholar 

  • Bolwell P P, Page A, Pislewska M and Wojtaszek P 2001 Pathogenic infection and the oxidative defenses in plants apoplast;Protoplasma 217 20–32

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Valpuesta V and Botella M A 2003 Developing salt tolerance plants in a new century: a molecular biology approach;Plant Cell Tissue Organ Cult. 73 101–115

    Article  CAS  Google Scholar 

  • Boyes D C, Zayed A M, Ascenzi R, McCaskill A J, Hoffman N E, Davis K R and Gorlach J 2001 Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants;Plant Cell 13 1499–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley D J, Kjellbom P and Lamb C J 1992 Elicitor- and woundinduced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response;Cell 70 21–30

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara G G,et al 2003 ArrayExpress: a public repository for microarray gene expression data at the EBI;Nucleic Acids Res. 31 68–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brisson L F, Tenhaken R and Lamb C 1994 Function of oxidative crosslinking of cell wall structural proteins in plant disease resistance;Plant Cell 6 1703–1712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britto D T and Kronzucker H J 2001 Can unidirectional influx be measured in higher plants? A mathematical approach using parameters from efflux analysis;New Phytol. 150 37–47

    Article  CAS  Google Scholar 

  • Brown I, Trethowan J, Kerry M, Mansfield J and Bolwell G P 1998 Localization of components of the oxidative cross-linking of glycoproteins and of callose synthesis in papillae formed during the interaction between non-pathogenic strains ofXanthomonas campestris and French bean mesophyll cells;Plant J. 15 333–343

    Article  CAS  Google Scholar 

  • Capone R, Tiwari B S and Levine A 2004 Rapid transmission of oxidative and nitrosative stress signals from roots to shoots inArabidopsis;Plant Physiol. Biochem. 42 425–428

    Article  CAS  PubMed  Google Scholar 

  • Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H Jret al 1998 Defense activation and enhanced pathogen tolerance induced by H_2O2 in transgenic tobacco;Proc. Natl. Acad. Sci. USA 95 5818–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke A, Desikan R, Hurst R D, Hancock J T and Neill S J 2000 NO way back: nitric oxide and programmed cell death inArabidopsis thaliana suspension cultures;Plant J. 24 667–677

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Pieterse C M J and Mauch-Mani B 2002 Priming in plant-pathogen interactions;Trends Plant Sci. 7 110–116

    Article  Google Scholar 

  • Corpas F J, Barroso J B, Carreras A, Quiros M, Leon A M, Romero Puertas M C, Esteban F J, Valderrama R, Palma J M, Sandalio L M, Gomez M and Del Rio L A 2004 Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants;Plant Physiol. 136 2722–2733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas F J, Barroso J B and del Río L A 2001 Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells;Trend Plant Sci. 6 145–150

    Article  CAS  Google Scholar 

  • Craigon D J, James N, Okyere J, Higgins J, Jotham J and May S 2004 NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service;Nucleic Acids Res. (Database issue) 32 575–577

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van MontaguM,. Inzé D and Van Breusegem F 2000 Dual action of active oxygen species during plant stress responses;Cell. Mol. Life Sci. 57 779–795

    Article  CAS  PubMed  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shenggiang Z, Oliver D J, Coutu J, Shulaev V, Schlauch K and Mittler R 2005 Cytolosic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis;Plant Cell 17 268–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Zeier J, Marocco A and Lamb C2001 Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response;Proc. Natl. Acad. Sci. USA 98 13454–13459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delledone M, Xia Y, Dixon R A and Lamb C 1998 Nitric oxide functions as a signal in plant disease resistance;Nature (London) 394 585–588

    Article  CAS  Google Scholar 

  • del Río LA, Corpas F J and Barroso J B 2004 Nitric oxide and nitric oxide synthase activity in plants;Phytochemistry 65 783–792

    Article  PubMed  CAS  Google Scholar 

  • del Río L A, Corpas F J, Sandalio L M, Palma José M, Gómez M and Barroso J B 2002 Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes;J. Exp. Bot. 53 1255–1272

    Article  PubMed  Google Scholar 

  • Desikan R, Mackerness A H S, Hancock J T and Neil S J 2001 Regulation ofArabidopsis transcriptome by oxidative stress;Plant Physiol. 127 159–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desikan R, Griffiths R, Hancock J and Neill S 2002 A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure inArabidopsis thaliana;Proc. Natl. Acad. Sci. USA 99 16314–16318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmyter S, Vandenbussche F, Hao Q, Proost P, Peumans J W, and Van Damme Els J M 2003 Type-1 ribosome-inactivating protein from iris bulbs: a useful agronomic tool to engineer virus resistance?;Plant Mol. Biol. 51 567–576

    Article  CAS  PubMed  Google Scholar 

  • Diaz M, Achkor H, Titarenko E and Martinez M C 2004 The gene encoding glutathione-dependent formaldehyde dehydrogenase/ GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid;FEBS Lett. 543 136–139

    Article  CAS  Google Scholar 

  • Doke N 1983 Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race ofPhytophthora infestans and to the hyphal wall components;Physiol. Plant Pathol. 23 345–357

    Article  CAS  Google Scholar 

  • Doke N 1997 The oxidative burst: roles in signal transduction and plant stress; inOxidative stress and the molecular biology of antioxidant defenses (ed.) J G Scandalios (New York: Cold Spring Harbor Laboratory Press) pp 785–813

    Google Scholar 

  • Doke N and Miura Y 1995 In vitro activation of NADPH-dependent O2 generating system in a plasma membrane-rich fraction of potato tuber tissues by treatment with an elicitor fromPhytophthora infestans or with digitonin;Physiol. Mol. Plant Pathol. 46 17–28

    Article  CAS  Google Scholar 

  • Dordas C, Hasinoff B B, Igamberdiev A U, Manac’h N, Rivoal J and Hill R D 2003 Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress;Plant J. 35 763–770

    Article  CAS  PubMed  Google Scholar 

  • Draper J 1997 Salicylate, superoxide synthesis and cell suicide in plant defence;Trends Plant Sci. 2 162–165

    Article  Google Scholar 

  • Durner J, Wendehenne D and Klessig D F 1998 Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose;Proc. Natl. Acad. Sci. USA 95 10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar R, Domrachev M and Lash A E 2002 Gene Expression Omnibus: NCBI gene expression and hybridisation array data repository;Nucleic Acids Res. 30 207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felton G W and Eichenseer H 1999 Herbivore saliva and its effect on plant defense against herbivores and pathogens: inInduced plant defenses against pathogens and herbivores: Ecology and agriculture (eds) A A Agrawal, S Tuzun and E Bent (St. Paul, Minnesota: American Phytopathologial Society Press) pp 19–36

    Google Scholar 

  • Foreman J, Demidchik V, Bothwell J H F, Mylona P, Miedema H, Torres M A, Linstead P, Costa S, Brownlee C, Jones JDG etal 2003 Reactive oxygen species produced by NADPH oxidase regulate plant cell growth;Nature (London) 422 422–446

    Article  CAS  Google Scholar 

  • Foyer C H and Noctor G 2005 Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses;Plant Cell 17 1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer C H, Descourvieres P and Kunert K J 1994 Protection against oxygen radicals: an important defense mechanism studied in transgenic plants;Plant Cell Environ. 17 507–523

    Article  CAS  Google Scholar 

  • Gachomo W E 2005 Studies of the life cycle ofDiplocarpon rosae Wolf on roses and the effectiveness of fungicides on pathogenesis;Cuvillier Verlag Goettingen, ISBN 3-86537-460-3, pp 1–147

  • Gachomo W E and Kotchoni O S 2006 Functional analysis of hydrogen peroxide-activated protein expression mediating black spot disease resistance in rose leaves infected by two differentially aggressive field isolates ofDiplocarpon rosae;Belg. J. Bot. (in press)

  • Gachomo W E, Shonukan O O and Kotchoni O S 2003 The molecular initiation and subsequent acquisition of disease resistance in plants;Afr. J. Biotechnol. 2 26–32

    Article  CAS  Google Scholar 

  • Grün S, Lindermayr C, Sell S and Durner J 2006 Nitric oxide and gene regulation in plants;J. Exp. Bot. 57 507–516

    Article  PubMed  CAS  Google Scholar 

  • Guo F-Q, Okamoto M and Crawford N M 2003 Identification of a plant nitric oxide synthase gene involved in hormonal signalling;Science 302 100–103

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B and Gutteridge J M C 1989Free radicals in biology and medicine (Oxford: Clarendon Press)

    Google Scholar 

  • Halliwell B and Gutteridge J M C 2002Free radicals in biology and medicine 3rd edition (Oxford, UK: Oxford University Press)

    Google Scholar 

  • Hausladen A, Gow A J and Stamler J S 1998 Nitrosative stress: metabolic pathway involving the flavohemoglobin;Proc. Natl. Acad. Sci. USA 95 14100–14105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Tang R H, Hao Y, Stevens R D, Cook C W, Ahn S M, Jing L, Yang Z, Chen L, Guo F, Fiorani F, Jackson R B, Crawford N M and Pei Z M 2004 Nitric oxide represses theArabidopsis floral transition;Science 305 1968–1971

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller M J and Durner J 2004 Nitric oxide is induced by wounding and influences jasmonic acid signaling inArabidopsis thaliana;Planta 218 938–946

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Von Rad U and Durner J 2002 Nitric oxide induces the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells;Planta 215 914–923

    Article  CAS  PubMed  Google Scholar 

  • Jabs T, Dietrich R A and Dangl J L 1996 Initiation of runaway cell death in anArabidopsis mutant by extracellular superoxide;Science 273 1853–1856

    Article  Google Scholar 

  • Jones A 2000 Does the plant mitochondrion integrate cellular stress and regulate programmed cell death?;Trends Plant Sci. 5 225–230

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, He Z, Patkar R and Zhu Q 2003 Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens;Transgenic Res. 12 577–586

    Article  CAS  PubMed  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G and Mullineaux P 1999 Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis;Science 284 654–657

    Article  CAS  PubMed  Google Scholar 

  • Kawano T, Pinontoan R, Uozumi N, Miyake C, Asada K, Kolattukudy P E and Muto S 2000 Aromatic monoamine-induced immediate oxidative burst leading to an increase in cytosolic Ca2+ concentration in tobacco suspension culture;Plant Cell Physiol. 41 1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Kerr J F R, Wyllie A H and Currie A R 1972 Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics;Br. J. Cancer 26 239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler A and Baldwin I T 2002 Plant response to herbivory: the emerging molecular analysis;Annu. Plant Biol. 53 299–328

    Article  CAS  Google Scholar 

  • Khokhlatchev A V, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E and Cobb M H 1998 Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation;Cell 93 605–615

    Article  CAS  PubMed  Google Scholar 

  • Khurana S M P, Pandey S K, Sarkar D and Chanemougasoundharam A 2005 Apoptosis in plant disease response: a close encounter of the pathogenkind;Curr. Sci. 88 740–752

    CAS  Google Scholar 

  • Kieffer F, Jherminier J, Simon-Plas F, Nicole M, Paynot M, Elmayan T and Blein J 2000 The fungal elicitor cryptogein induces cell wall modifications on tobacco cell suspension;J. Exp. Bot. 51 1799–1811

    Article  CAS  PubMed  Google Scholar 

  • Kotchoni O S 2004Molecular and physiological characterization of transgenic Arabidopsis plants expressing different aldehyde dehydrogenase (ALDH) genes, Ph.D. thesis, University of Bonn, Germany

    Google Scholar 

  • Kotchoni O S, Kuhns C, Ditzer A, Kirch H-H and Bartels D 2006 Over-expression of different aldehyde dehydrogenase genes inArabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress;Plant Cell Environ. 29 1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Kovtun Y, Chiu W -L, Tena G and Sheen J 2000 Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants;Proc. Natl. Acad. Sci. USA 97 2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D and Klessig D F 2000 Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid;Mol. Plant Microbe Interact. 13 347–351

    Article  CAS  PubMed  Google Scholar 

  • Kwak J M, Mori I C, Pei Z M, Leonhardt N, Torres M A, Dangl J L, Bloom R E, Bodde S, Jones J D and Schroeder J I 2003 NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis,EMBO J. 22 2623–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb C and Dixon R A 1997 The oxidative burst in plant disease resistance response;Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 251–275

    Article  CAS  PubMed  Google Scholar 

  • Lamotte O, Courtois C and Barnavon L 2005 Nitric oxide in plants: the biosynthesis and cell signalling properties of a fascinating molecule;Planta 221 1–4

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R A and Lamb C J 1994 H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response;Cell 79 583–593

    Article  CAS  PubMed  Google Scholar 

  • Lim Y S, Cha M -K, Kim H K, Uhm T B, Park J W, Kim K and Kim I H 1993 Removal of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible rolein vitro;Biochem. Biophys. Res. Commun. 192 273–280

    Article  CAS  PubMed  Google Scholar 

  • Lu H and Higgins V J 1999 The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogenCladosporium fulvum;Physiol. Mol. Plant Pathol. 54 131–143

    Article  CAS  Google Scholar 

  • Mazau D and Esquerré-Tugayé M T 1986 Hydroxyprolinerich glycoprotein accumulation in the cell walls of plants infected by various pathogens;Physiol. Mol. Plant Pathol. 29 147–157

    Article  CAS  Google Scholar 

  • McLusky S R, Bennett M H, Beale M H, Lewis M J, Gaskin P and Mansfield J W 1999 Cell wall alteration and localized accumulation of feruloyl-3’-methoxytyramine in onion epidermis at site of attempted penetration byBotrytis allii are associated with actin polarisation, peroxidase activity and suppression of flavonoid biosynthesis;Plant J. 17 523–534

    Article  CAS  Google Scholar 

  • Meinke D W, Cherry J M, Dean C D, Rounsley S and Koonneef M 1998Arabidopsis thaliana: a model plant for genome analysis;Science 282 662–682

    Article  CAS  PubMed  Google Scholar 

  • Mellersh D G, Foulds I V, Higgins V J and Heath C M 2002 H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions;Plant J. 29 257–268

    Article  CAS  PubMed  Google Scholar 

  • Meyer C, Lea U S, Provan F, Kaiser W M and Lillo C 2004 Is nitrate reductase a major player in the plant NO (nitric oxide) game?;Photosynth Res. (in press)

  • Mittler R 2002 Oxidative stress, antioxidants, and stress tolerance;Trends Plant Sci. 7 405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M and Van Breusegem F 2004 The reactive oxygen gene network of plants;Trends Plant Sci. 9 490–498

    Article  CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad D T, Lee O, Kwak S -S, Kim D H, Nam J, Bahk J, Hong J C, Lee S Y, Cho M Je and Lim C Oh 2003 NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants;Proc. Natl. Acad. Sci. USA 100 358–363

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux P and Karpinski S 2002 Signal transduction in response to excess light: getting out of the chloroplast;Curr. Opin. Plant Biol. 5 43–48

    Article  CAS  PubMed  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S and Soave C 2004Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photo-oxidative stress and to nitric oxideinduced cell death;Plant J. 38 940–953

    Article  CAS  PubMed  Google Scholar 

  • Neill S, Desikan R and Hancock J 2002 Hydrogen peroxide signalling,Curr. Opin. Plant Biol. 5 388–395

    Article  CAS  PubMed  Google Scholar 

  • Nielsen K and Boston R S 2001 Ribosome-inactivating proteins: a plant perspective;Annu. Rev. Plant Physiol. Plant Mol. Biol. 52 785–816

    Article  CAS  PubMed  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman D W and Goldman S L 2004 Microarray analysis of nitric oxide responsive transcripts inArabidopsis;Plant Biotech. J. 2 359–366

    Article  CAS  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez M E and Foyer C H 2005 Ascorbic acid deficiency activates cell death and disease resistance responses inArabidopsis;Plant Physiol. 139 1291–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng M and Kuc J 1992 Peroxidase-generated hydrogen peroxide as source of antifungal activity in vitro and on tobacco leaf disks;Phytopathology 82 696–699

    Article  CAS  Google Scholar 

  • Penninckx I A, Thomma B P, Buchala A, Metraux J P and Broekaert W F 1998 Concomitant activation of jamonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis;Plant Cell 10 2103–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perumalla C J and Heath MC 1991 The effect of inhibitors of various cellular processes on the wall modifications induced in bean leaves by the cowpea rust fungus;Physiol. Mol. Plant Pathol. 38 293–300

    Article  CAS  Google Scholar 

  • Pnueli L, Hongjian L and Mittler R 2003 Growth suppression, abnormal guard cell response, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants;Plant J. 34 187–203

    Article  CAS  PubMed  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M and Delledonne M 2003 Nitric oxide-mediated transcriptional changes inArabidopsis thaliana;Mol. Plant. Microbe Interact. 16 1094–1105

    Article  CAS  PubMed  Google Scholar 

  • Ramanjulu S and Bartels D 2002 Drought- and desiccation-induced modulation of gene expression in plants;Plant Cell Environ. 25 141–151

    Article  CAS  PubMed  Google Scholar 

  • Rao M V and Davis R D 1999 Ozone-induced cell death occurs via two distinct mechanisms inArabidopsis: the role of salicylic acid;Plant J. 17 603–614

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H and Mittler R 2004 The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress inArabidopsis;J. Biol. Chem. 279 11736–11743

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto A, Ueda M and Morikawa H 2002Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase;FEBSLett. 515 20–24

    Article  CAS  Google Scholar 

  • Scandalios J G, Guan L and Polidoros A N 1997 Catalases in plants: gene structure, properties, regulation, and expression; inOxidative stress and the molecular biology of antioxidant defenses (ed.) J G Scandalios (New York: Cold Spring Harbor Laboratory Press) pp 343–406

    Google Scholar 

  • Scheel D 2002 Oxidative burst and the role of reactive oxygen species in plant-pathogen interactions; inOxidative stress in plants. (eds) D Inzè and M Van Montagu (London: Taylor and Francis) pp 137–153

    Google Scholar 

  • Scheideler M, Schlaich N L, Fellenberg K, Beissbarth T, Hauser N C, Vingron M, Slusarenko A J and Hoheisel J D 2002 Monitoring the switch from housekeeping to pathogen defense metabolism inArabidopsis thaliana using cDNA arrays;J. Biol. Chem. 277 10555–10561

    Article  CAS  PubMed  Google Scholar 

  • Schmid M, Davison T S, Henz S R, Pape U J, Demar M, Vingron M, Schölkopf B Weigel D and Lohmann J 2005 A gene expression map ofArabidopsis thaliana development;Nat. Genet. 37 501–506

    Article  CAS  PubMed  Google Scholar 

  • Schweizer P, Christoffel A and Dudler R 1999 Transient expression of members of the germin-like gene family in epidermal cells of wheat confers disease resistance;Plant J. 20 541–552

    Article  CAS  PubMed  Google Scholar 

  • Shimono M, Yazaki J, Nakamura K, Kishimoto N, Kikuchi S, Iwano M, Yamamoto K, Sakata K, Sasaki T and Nishiguchi M 2003 cDNA microarray analysis of gene expression in rice plants treated with probenazole, a chemical inducer of disease resistance;J. Gen. Plant Pathol. 69 76–82

    Article  CAS  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar V K, Dixon R A and Lamb C 1997 Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms;Plant Cell 9 261–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N 1998 Plant resistance to environmental stress;Curr. Opin. Biotechnol. 9 214–219

    Article  CAS  PubMed  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E and Levine A 1999 The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants;Plant Cell 11 431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel S H Koornnef A, Claessens SMC, Korzelius J Pet al 2003 NPR1 modulates cross-talk between salicylate- and jasmonate- dependent defense pathways through a novel function in the cytosol;Plant Cell 15 760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamler J S 1994 Redox signalling: nitrosylation and related target interactions of nitric oxide;Cell 78 931–936

    Article  CAS  PubMed  Google Scholar 

  • Stamler J S, Lamas S and Fang F C 2001 Nitrosylation: the prototypic redox-based signaling mechanism;Cell 106 675–683

    Article  CAS  PubMed  Google Scholar 

  • Stöhr C, Strube F, Marx G, Ullrich W R and Rockel P 2001 A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite;Planta 21 835–841

    Google Scholar 

  • Surplus S L, Jordan B R, Murphy A M, Carr J P, Thomas B and Mackerness S A -H 1998 Ultraviolet-B-induced responses inArabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins;Plant Cell Environ. 21 685–694

    Article  CAS  Google Scholar 

  • Tarantino D, Vannini C, Brascale M, Campa M, Soave C and Murgia I 2005 Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances paraquat-induced photooxidative stress and nitric oxide-induced cell death;Planta 10.1007/s00425-0051485-9

  • Tena G, Asai T, Chiu W -L, and Sheen J 2001 Plant mitogenactivated protein kinase signaling cascades;Curr. Opin. Plant Biol. 4 392–400

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y and Collinge D B 1997 Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction;Plant J. 11 1187–1194

    Article  CAS  Google Scholar 

  • Torres M A, Dangl J L and Jones J D 2002 Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response,Proc. Natl. Acad. Sci. USA 99 517–522

    Article  CAS  PubMed  Google Scholar 

  • Tyres M and Mann M 2003 From genomics to proteomics;Nature(London) 422 193–197

    Article  CAS  Google Scholar 

  • Van Camp W, Van MontaguM and Inzé D 1998 H2O2 and NO: redox signals in disease resistance;Trends Plant Sci. 3 330–334

    Article  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich R A, Hirt H and Mengiste T 2006 The membrane-anchored BOTRYTIS-INDUCED KINASE 1 plays distinct roles inArabidopsis resistance to necrotrophic and biotrophic pathogens;Plant Cell 18 257–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willmott N, Sethi J K, Walseth T F, Lee H C, White A M and Galione A 1996 Nitric oxide-induced mobilization of intracellular calcium via cyclic ADP-ribose signalling pathway;J. Biol. Chem. 271 3699–3705

    Article  Google Scholar 

  • Wu G, Shortt B J, Lawrence E B, Levine E B, Fitzsimmons K C and Shah D M 1995 Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants;Plant Cell 7 1357–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie A H, Kerr J F and Currie A R 1980 Cell death: the significance of apoptosis;Int. Rev. Cytol. 68 251–306

    Article  CAS  PubMed  Google Scholar 

  • Xiong L and Yang Y 2003 Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acidinducible mitogen-activated protein kinase;Plant cell 15 745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H and Sakihama Y 2000 Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species;FEBSLett. 468 89–92

    Article  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y and Ikehara N 1997 Flavonoid-peroxidase reaction as detoxification mechanism of plant cells against H2O2;Plant Physiol. 115 1405–1412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P and Durner J 2004 Innate immunity inArabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense gene;Proc. Natl. Acad. Sci. USA (in press)

  • Zemojtel T, Penzkofer T, Dandekar T and Schultz J 2004 A novel conserved family of nitric oxide synthase?;Trends Biochem. Sci. 29 224–226

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L and Gruissem W 2004 GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox;Plant Physiol. 136 2621–2632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon O. Kotchoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotchoni, S.O., Gachomo, E.W. The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 31, 389–404 (2006). https://doi.org/10.1007/BF02704112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704112

Keywords

Navigation