Skip to main content
Log in

Formation of oxylipins by CYP74 enzymes

  • Original Paper
  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes. Products are hydroperoxy polyunsaturated fatty acids and metabolites derived there from collectively named oxylipins. They may either originate from chemical oxidation or are synthesized by the action of various enzymes, such as lipoxygenases. Cloning of many lipoxygenases and other key enzymes metabolizing oxylipins revealed new insights on oxylipin functions, new reactions and the first hints on enzyme mechanisms. These aspects are reviewed with respect to metabolism of fatty acid hydroperoxides by an atypical P450 subfamily: the CYP74. Up to now this protein family contains three different enzyme activities: (i) allene oxide synthase leading to the formation of unstable allene oxides which react to ketol and cyclopentenone fatty acids, (ii) hydroperoxide lyase producing hemiacetals decomposing to aldehydes and ω-oxo fatty acids and (iii) divinyl ether synthase which forms divinyl ethers. Signalling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among their numerous products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AOC:

Allene oxide cyclase

AOS:

Allene oxide synthase

DES:

Divinyl ether synthase

9-HPOTE:

(9S,10E,12Z,15Z)-9-Hydroperoxy-10,12,15-octadecatrienoic acid

13-HPOTE:

(9Z,11E,13S,15Z)-13-Hydroperoxy-9,11,15-octadecatrienoic acid

HPO(D/T)E:

Hydroperoxy linole(n)ic acid

HPL:

Hydroperoxide lyase

JA:

Jasmonic acid

KO(D/T)E:

Keto linole(n)ic acid

LA:

Linoleic acid

LeA:

Linolenic acid

LOX:

Lipoxygenase

OPDA:

(9S,13S)-12-Oxo phytodienoic acid

PUFA:

Polyunsaturated fatty acids

References

  • Arimura G-I, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta 1734:91–111

    PubMed  CAS  Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  PubMed  CAS  Google Scholar 

  • Berger S (2002) Jasmonate-related mutants of Arabidopsis as tools for studying stress signaling. Planta 214:497–504

    Article  PubMed  CAS  Google Scholar 

  • Blée E (1998) Phytooxylipins and plant defense reactions. Prog Lipid Res 37:33–72

    Article  PubMed  Google Scholar 

  • Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–322

    Article  PubMed  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  PubMed  CAS  Google Scholar 

  • Caldelari D, Farmer EE (1998) A rapid assay for the coupled cell free generation of oxylipins. Phytochemistry 47:599–604

    Article  CAS  Google Scholar 

  • Chehab EW, Raman G, Walley JW, Perea JV, Banu G, Theg S, Dehesh K (2006) Rice hydroperoxide lyases with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. Plant Physiol 141:121–134

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM (1993) Lipids of bryophytes. Prog Lipid Res 32:281–356

    Article  PubMed  CAS  Google Scholar 

  • Duan H, Huang M-Y, Palacio K, Schuler MA (2005) Variations in CYP74B2 (hydroperoxide lyase) gene expression differentially affect hexenal signaling in the Columbia and Landsberg erecta ecotypes of Arabidopsis. Plant Physiol 139:1529–1544

    Article  PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  PubMed  CAS  Google Scholar 

  • Froehlich JE, Itoh A, Howe GA (2001) Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–317

    Article  PubMed  CAS  Google Scholar 

  • Galliard T, Phillips DR (1972) The enzymic conversion of linoleic acid into 9-(nona-1′,3′-dienoxy)non-8-enoic acid, a novel unsaturated ether derivate isolated from homogenates of Solanum tuberosum tubers. Biochem J 129:743–753

    PubMed  CAS  Google Scholar 

  • Galliard T, Wardale DA, Mathew JA (1974) The enzymic and non-enzymic degradation of colneleic acid, an unsaturated fatty acid ether intermediate in the lipoxygenase pathway of linoleic acid oxidation in potato (Solanum tuberosum) tubers. Biochem J 138:23–31

    PubMed  CAS  Google Scholar 

  • Gardner HW (1991) Recent investigations into the lipoxygenase pathway of plants. Biochim Biophys Acta 1084:221–239

    PubMed  CAS  Google Scholar 

  • Gardner HW (1996) Lipoxygenase as a versatile biocatalyst. J Am Oil Chem Soc 73:1347–1357

    Article  CAS  Google Scholar 

  • Gardner HW, Hamberg M (1993) Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia-Faba L). J Biol Chem 268:6971–6977

    PubMed  CAS  Google Scholar 

  • Gerwick WH (1994) Structure and biosynthesis of marine algal oxylipins. Biochim Biophys Acta 1211:243–255

    PubMed  CAS  Google Scholar 

  • Gill I, Valivety R (1997a) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  CAS  Google Scholar 

  • Gill I, Valivety R (1997b) Polyunsaturated fatty acids, part 2: biotransformations and biotechnological applications. Trends Biotechnol 15:470–478

    Article  CAS  Google Scholar 

  • Grechkin A (1995) Physiologically active products of plant lipoxygenase pathway. In: Kader J-C, Mazliak P (eds) Plant lipid metabolism. Kluwer Academic Publishers, Dordrecht, pp 274–279

    Google Scholar 

  • Grechkin A (1998) Recent developments in biochemistry of the plant lipoxygenase pathway. Prog Lipid Res 37:317–352

    Article  PubMed  CAS  Google Scholar 

  • Grechkin AN (1994) Cyclization of natural allene oxide fatty acids. The anchimeric assistance of β,γ-double bond beside the oxirane and the reaction mechanism. Biochim Biophys Acta 1213:199–206

    PubMed  CAS  Google Scholar 

  • Grechkin AN, Hamberg M (2004) The “heterolytic hydroperoxide lyase” is an isomerase producing a short-lived fatty acid hemiacetal. Biochim Biophys Acta 1636:47–58

    PubMed  CAS  Google Scholar 

  • Hamberg M (1988) Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid: identification of an allene oxide cyclase. Biochem Biophys Res Comm 156:543–550

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M (2000) New cyclopentenone fatty acids formed from linoleic and linolenic acids in potato. Lipids 35:353–363

    Article  PubMed  CAS  Google Scholar 

  • Hamberg M (2005) Hidden stereospecificity in the biosynthesis of divinyl ether fatty acids. FEBS J 272:736–743

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka A (1996) The fresh green odor emitted by plants. Food Rev Int 12:303–350

    Article  CAS  Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  PubMed  CAS  Google Scholar 

  • Itoh A, Howe GA (2001) Molecular cloning of a divinyl ether synthase: identification as a CYP74 cytochrome P450. J Biol Chem 276:3620–3627

    Article  PubMed  CAS  Google Scholar 

  • Itoh A, Schilmiller AL, McCaig BC, Howe GA (2002) Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids. J Biol Chem 277:46051–46058

    Article  PubMed  CAS  Google Scholar 

  • Kandzia R, Stumpe M, Berndt E, Szalata M, Matsui K, Feussner I (2003) On the specificity of lipid hydroperoxide fragmentation by fatty acid hydroperoxide lyase from Arabidopsis thaliana. J Plant Physiol 160:803–809

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006a) Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci 170:715–723

    Article  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, Takabayashi J (2006b) ETR1-, JAR1- and PAD2-dependent signaling pathways are involved in C6-aldehyde-induced defense responses of Arabidopsis. Plant Sci 171:415–423

    Article  CAS  Google Scholar 

  • Kubigsteltig I, Laudert D, Weiler EW (1999) Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta 208:463–471

    Article  PubMed  CAS  Google Scholar 

  • Matsui K (1998) Properties and structures of fatty acid hydroperoxide lyase. Belgian J Bot 131:50–62

    Google Scholar 

  • Matsui K, Miyahara C, Wilkinson J, Hiatt B, Knauf V, Kajiwara T (2000a) Fatty acid hydroperoxide lyase in tomato fruits: cloning and properties of a recombinant enzyme expressed in Escherichia coli. Biosci Biotechnol Biochem 64:1189–1196

    Article  CAS  Google Scholar 

  • Matsui K, Ujita C, Fujimoto S, Wilkinson J, Hiatt B, Knauf V, Kajiwara T, Feussner I (2000b) Fatty acid 9- and 13-hydroperoxide lyases from cucumber. FEBS Lett 481:183–188

    Article  CAS  Google Scholar 

  • Maucher H, Hause B, Feussner I, Ziegler J, Wasternack C (2000) Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development. Plant J 21:199–213

    Article  PubMed  CAS  Google Scholar 

  • Mita G, Quarta A, Fasano P, De Paolis A, Di Sansebastiano GP, Perrotta C, Iannacone R, Belfield E, Hughes R, Tsesmetzis N, Casey R, Santino A (2005) Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies. J Exp Bot 56:2321–2333

    Article  PubMed  CAS  Google Scholar 

  • Noordermeer MA, Feussner I, Kolbe A, Veldink GA, Vliegenthart JF (2000) Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process. Biochem Biophys Res Commun 277:112–116

    Article  PubMed  CAS  Google Scholar 

  • Noordermeer MA, Veldink GA, Vliegenthart JF (2001) Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance. ChemBioChem 2:494–504

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Durst F, Werck-Reichhart D, Gardner HW, Camara B, Cornish K, Backhaus RA (1995) The major protein of guayule rubber particles is a cytochrome P450. J Biol Chem 270:8487–8494

    Article  PubMed  CAS  Google Scholar 

  • Pohnert G (2005) Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:1–14

    Article  CAS  Google Scholar 

  • Prost I, Dhondt S, Rothe G, Vicente J, Rodriguez MJ, Kift N, Carbonne F, Griffiths G, Esquerre-Tugaye M-T, Rosahl S, Castresana C, Hamberg M, Fournier J (2005) Evaluation of the antimicrobial activities of plant oxylipins supports their involvement in defense against pathogens. Plant Physiol 139:1902–1913

    Article  PubMed  CAS  Google Scholar 

  • Rosahl S, Feussner I (2005) Oxylipins. In: Murphy D (ed) Plant lipids. Blackwell Publishing Ltd., Oxford, UK, pp 329–354

    Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  PubMed  CAS  Google Scholar 

  • Schneider C, Tallman KA, Porter NA, Brash AR (2001) Two distinct pathways of formation of 4-hydroxy-nonenal: mechanisms of non-enzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J Biol Chem 276:20831–20838

    Article  PubMed  CAS  Google Scholar 

  • Senger T, Wichard T, Kunze S, Göbel C, Lerchl J, Pohnert G, Feussner I (2005) A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J Biol Chem 280:7588–7596

    Article  PubMed  CAS  Google Scholar 

  • Shrestha R, Noordermeer MA, Van der Stelt M, Veldink GA, Chapman KD (2002) N-Acylethanolamines are metabolized by lipoxygenase and amidohydrolase in competing pathways during cottonseed imbibition. Plant Physiol 130:391–401

    Article  PubMed  CAS  Google Scholar 

  • Song WC, Baertschi SW, Boeglin WE, Harris TM, Brash AR (1993a) Formation of epoxyalcohols by a purified allene oxide synthase. Implications for the mechanism of allene oxide synthesis. J Biol Chem 268:6293–6298

    CAS  Google Scholar 

  • Song WC, Funk CD, Brash AR (1993b) Molecular cloning of an allene oxide synthase – a cytochrome-P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA 90:8519–8523

    Article  CAS  Google Scholar 

  • Stelmach BA, Müller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW (2001) A novel class of oxylipins, sn1-O-(12-Oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838

    Article  PubMed  CAS  Google Scholar 

  • Stumpe M, Bode J, Göbel C, Wichard T, Schaaf A, Frank W, Frank M, Reski R, Pohnert G, Feussner I (2006a) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim Biophys Acta 1761:301–312

    CAS  Google Scholar 

  • Stumpe M, Göbel C, Demchenko K, Hoffmann M, Klosgen RB, Pawlowski K, Feussner I (2006b) Identification of an allene oxide synthase (CYP74C) that leads to formation of α-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato. Plant J 47:883–896

    Article  CAS  Google Scholar 

  • Stumpe M, Kandzia R, Göbel C, Rosahl S, Feussner I (2001) A pathogen-inducible divinyl ether synthase (CYP74D) from elicitor-treated potato suspension cells. FEBS Lett 507:371–376

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Yamaguchi S, Iida T, Hashimoto I, Teranishi H, Mizoguchi M, Yano F, Todoroki Y, Watanabe N, Yokoyama M (2003) Endogenous α-ketol linolenic acid levels in short day-induced cotyledons are closely related to flower induction in Pharbitis nil. Plant Cell Physiol 44:35–43

    Article  PubMed  CAS  Google Scholar 

  • Tijet N, Brash AR (2002) Allene oxide synthases and allene oxides. Prostaglandins Lipid Mediators 68–69:423–431

    Article  Google Scholar 

  • van der Stelt M, Noordermeer MA, Kiss T, Van Zadelhoff G, Merghart B, Veldink GA, Vliegenthart JF (2000) Formation of a new class of oxylipins from N-acyl(ethanol)amines by the lipoxygenase pathway. Eur J Biochem 267:2000–2007

    Article  Google Scholar 

  • Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ (2001) Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA 98:8139–8144

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Chetelat A, Caldelari D, Farmer EE (1999) Divinyl ether fatty acid synthesis in late blight-diseased potato leaves. Plant Cell 11:485–493

    Article  PubMed  CAS  Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    Article  PubMed  CAS  Google Scholar 

  • Weichert H, Kolbe A, Kraus A, Wasternack C, Feussner I (2002) Metabolic profiling of oxylipins in germinating cucumber seedlings – lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes. Planta 215:612–619

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Yokoyama M, Iida T, Okai M, Tanaka O, Takimoto A (2001) Identification of a component that induces flowering of Lemna among the reaction products of α-ketol linolenic acid (FIF) and norepinephrine. Plant Cell Physiol 42:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J, Hamberg M, Miersch O, Parthier B (1997) Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol 114:565–573

    PubMed  CAS  Google Scholar 

  • Zimmerman DC, Coudron CA (1979) Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol 63:536–541

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman DC, Feng P (1977) Characterization of a prostaglandin-like metabolite of linolenic acid produced by a flaxseed extract. Lipids 13:313–316

    Article  Google Scholar 

Download references

Acknowledgements

The authors apologize to scientists whose work we overlooked or were not able to include because of length limitations. We are grateful for the constructive help of two anonymous reviewers. Our work was supported by the Deutsche Forschungsgemeinschaft and the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Feussner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpe, M., Feussner, I. Formation of oxylipins by CYP74 enzymes. Phytochem Rev 5, 347–357 (2006). https://doi.org/10.1007/s11101-006-9038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-006-9038-9

Keywords

Navigation