Skip to main content

Heavy Metals Stress on Poplar: Molecular and Anatomical Modifications

  • Chapter
  • First Online:
Approaches to Plant Stress and their Management

Abstract

Heavy metal stress responses vary from plant to plant depending on the type of heavy metals and require a coordinated interplay of complex physiological and biochemical processes, gene expression, protein modification and changes in metabolites compositions leading to proper stress signal and tolerance.

Fast-growing tree species, such as poplar, have been studied as possible candidate in phytoremediation approaches to clean up soil or water polluted by organic and inorganic compounds. In particular poplar is known both for the ability to uptake (i.e. phytoextraction) and to stabilise heavy metals (i.e. phytostabilisation) into their tissues, thus reducing the mobility of these contaminants in the soil profile. Compared to other plant species, poplar trees have several advantageous characteristics, such as deeper root system, higher transpiration activity, and productivity. Moreover, they produce economically valuable nonfood biomass exploitable both for wood and bioenergy production. Since the availability of the genome sequence of Populus trichocarpa and the development of high-throughput technologies, poplar has also emerged as the model system for tree biology studies.

In this chapter, we examine the effects of heavy metals on anatomical traits and molecular machinery that are responsible for their accumulation and tolerance in poplar. Starting with this deeper molecular information, this chapter could provide new ideas for improving poplar trees with traits conferring heavy metals tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arisi ACM, Mocquot B, Lagriffoul A et al (2000) Responses to cadmium in leaves of transformed poplars overexpressing g-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  CAS  Google Scholar 

  • Bartosz G (1997) Oxidative stress in plants. Acta Phys Plant 19:47–64

    Article  CAS  Google Scholar 

  • Burken JG, Schnoor JL (1998) Predictive relationships for uptake of organic contaminants by hybrid poplar trees. Environ Sci Technol 32:3379–3385

    Article  CAS  Google Scholar 

  • Christopher M, Miranda M, Major I et al (2004) Gene expression profiling of systemically wound-induced defenses in hybrid poplar. Planta 219:936–947

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Cocozza C, Minnocci A, Tognetti R et al (2008) Distribution and concentration of cadmium in root tissue of Populus alba determined by scanning electron microscopy and energy-dispersive x-ray microanalysis. I For 1:96–103

    Google Scholar 

  • Cocozza C, Maiuro L, Tognetti R (2011) Mapping cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis. I For 4:113–120

    Google Scholar 

  • Di Baccio D, Tognetti R, Sebastiani L et al (2003) Responses of Populus deltoides x Populus nigra (Populus x euramericana clone I-214) to high zinc concentration. New Phytol 159:443–452

    Article  Google Scholar 

  • Di Baccio D, Kopriva S, Sebastiani L et al (2005) Does glutathione metabolism have a role in the defense of poplar against zinc excess? New Phytol 167:73–80

    Article  PubMed  Google Scholar 

  • Di Baccio D, Tognetti R, Minnocci A et al (2009) Responses of Populus x euramericana clone I-214 to zinc excess: carbon assimilation, structural modification, metal distribution and cellular localization. Environ Exp Bot 67:153–163

    Article  Google Scholar 

  • Di Baccio D, Minnocci A, Sebastiani L (2010) Leaf structural modifications in Populus x euramericana subjected to Zn excess. Biol Plant 54(3):502–508

    Article  CAS  Google Scholar 

  • Di Baccio D, Galla G, Bracci T et al (2011) Transcriptome analysis of Populus x euramericana clone I-214 leaves exposed to excess zinc. Tree Physiol 31:1293–1308

    Article  PubMed  Google Scholar 

  • Dietz KJ, Krämer U, Baier M (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

    Chapter  Google Scholar 

  • Duffus JH (2002) Heavy metals – a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Durand TC, Sergeant K, Planchon S et al (2010) Acute metal stress in Populus tremula x P. alba (717−1B4 genotype): leaf and cambial proteome changes induced by cadmium2+. Proteomics 10:349–368

    Article  PubMed  CAS  Google Scholar 

  • Elobeid M, Göbel C, Feussner I et al (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S et al (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  PubMed  CAS  Google Scholar 

  • Guerra F, Duplessi S, Kohler A et al (2009) Gene expression analysis of Populus deltoides roots subjected to copper stress. Environ Exp Bot 67:335–344

    Article  CAS  Google Scholar 

  • Gullner G, Komives T, Rennenberg H (2001) Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides. J Exp Bot 52:971–979

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Duplessis S, White H et al (2005) Gene expression patterns of trembling aspen trees following long-term exposure to interacted elevated CO2 and tropospheric O3. New Phytol 167:129–142

    Article  PubMed  CAS  Google Scholar 

  • He J, Li H, Luo J et al (2013) A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol 162:424–439

    Article  PubMed  CAS  Google Scholar 

  • Hermle S, Vollenweider P, Günthardt-Goerg MS et al (2007) Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater. Tree Physiol 27:1517–1531

    Article  PubMed  CAS  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Feria-Bourrellier AB, Lafouge F et al (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoot of nitrogen-starved plants. Plant Cell 24:245–258

    Article  PubMed  CAS  Google Scholar 

  • Kieffer P, Domenes J, Hoffmann L et al (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    Article  PubMed  CAS  Google Scholar 

  • Kieffer P, Planchon S, Oufir M et al (2009) Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 8:400–417

    Article  PubMed  CAS  Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148:189–199

    Article  CAS  Google Scholar 

  • Laureysens I, Blust R, Temmerman L et al (2004) Clonal variation and heavy metal accumulation and biomass production in a poplar coppice culture: I. seasonal variation in leaf, wood and bark concentration. Environ Pollut 131:484–494

    Article  Google Scholar 

  • Lei MG, Zhu CM, Liu YD et al (2011) Ethylene signalling is involved in regulation of phosphate starvation-induced gene expression and production of acid phosphatases and anthocyanin in Arabidopsis. New Phytol 189:1084–1095

    Article  PubMed  CAS  Google Scholar 

  • Li SZ, Lu YP, Zhen RG et al (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae YCF1-catalyzed transport of bis(gluthionato)cadmium. Proc Natl Acad Sci USA 94:42–47

    Article  PubMed  CAS  Google Scholar 

  • Lojewski NR, Fischer DG, Bailey JK et al (2009) Genetic basis of the aboveground productivity in two native Populus species and their hybrids. Tree Physiol 29:1133–1142

    Article  PubMed  Google Scholar 

  • Lunáčková L, Šottníková A, Masarovičová E et al (2003) Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biol Plant 47:403–411

    Article  Google Scholar 

  • Lux A, Martinka M, Vaculík M et al (2011) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  PubMed  CAS  Google Scholar 

  • Major I, Constabel P (2008) Functional analysis of the Kunitz trypsin inhibitor family in poplar reveals biochemical diversity and multiplicity in defense against herbivores. Plant Physiol 146:883–903

    Article  Google Scholar 

  • McGrath SP, Chaudri AM, Giller KE (1995) Long-term effects of metals in sewage sludge on soils, microorganisms and plants. J Ind Microbiol 14:94–104

    Article  PubMed  CAS  Google Scholar 

  • Meyer EH, Taylor NL, Millar AH (2008) Resolving and identifying protein components of plant mitochondrial respiratory complexes using three dimensions of gel electrophoresis. J Proteome Res 7:786–794

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Strand SE, Choe N et al (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  PubMed  CAS  Google Scholar 

  • Palumbo B, Angelone M, Bellanca A et al (2000) Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 95(3–4):247–266

    Article  CAS  Google Scholar 

  • Park J, Song WY, Ko D et al (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  PubMed  CAS  Google Scholar 

  • Pietrini F, Zacchini M, Iori V et al (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediation 12:105–120

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, De Souza MP, Lytle CM et al (1998) Selenium volatilization and assimilation by hybrid poplar (Populus tremula × alba). J Exp Bot 49:1889–1892

    CAS  Google Scholar 

  • Poschenrieder C, Tolra R, Barcelo J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H, Brunold C (1994) Significance of glutathione metabolism in plants under stress. Prog Bot 55:142–155

    CAS  Google Scholar 

  • Rinaldi C, Kohler A, Frey P et al (2007) Transcript profiling of poplar leaves upon infection with compatible and incompatible strains of the foliar rust Melampsora larici-populina. Plant Physiol 144:347–366

    Article  PubMed  CAS  Google Scholar 

  • Robinson BH, Mills TM, Petit D et al (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Schnoor JL (2000) Phytostabilization of metals using hybrid poplar trees. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 133–150

    Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus x canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environ Exp Bot 52:79–88

    Article  CAS  Google Scholar 

  • Smith C, Rodriguez-Buey M, Karlsson J et al (2004) The response of the poplar transcriptome to wounding and subsequent infection by a viral pathogen. New Phytol 164:123–136

    Article  CAS  Google Scholar 

  • Stobrawa K, Lorenc-Plucińska G (2008) Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders. Sci Total Environ 390:86–96

    Article  PubMed  CAS  Google Scholar 

  • Stoláriková M, Vaculík M, Lux A et al (2012) Anatomical differences of poplar (Populus x euramericana clone I-214) roots exposed to zinc excess. Biologia 67(3):483–489

    Article  Google Scholar 

  • Thapa G, Sadhukan A, Panda SK et al (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    Article  PubMed  CAS  Google Scholar 

  • Thomine S, Wang RC, Ward JM et al (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed  CAS  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G et al (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71(1):50–56

    Article  CAS  Google Scholar 

  • Tognetti R, Sebastiani L, Minnocci A (2004) Gas exchange and foliage characteristics of two poplar clones grown in soil amended with industrial waste. Tree Phys 24:75–82

    Article  Google Scholar 

  • Tuskan GA, Di Fazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Klement R, Pelikan P et al (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    Article  PubMed  CAS  Google Scholar 

  • Vollenweider P, Menard T, Günthardt-Goerg MS (2011) Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level. Environ Pollut 159:324–336

    Article  PubMed  CAS  Google Scholar 

  • Wintz H, Vulpe C (2002) Plant copper chaperones. Biochem Soc Trans 30:732–735

    Article  PubMed  CAS  Google Scholar 

  • Xiangdong L, Chi-sun P, Pui Sum L (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368

    Article  Google Scholar 

  • Yi XP, Hargett SR, Frankel LK et al (2009) The PsbP protein, but not the PsbQ protein, is required for normal thylakoid architecture in Arabidopsis thaliana. FEBS Lett 583:2142–2147

    Article  PubMed  CAS  Google Scholar 

  • Zuther E, Büchel K, Hundertmark M et al (2004) The role of raffinose in the cold acclimation response of Arabidopsis thaliana. FEBS Lett 576:169–173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Sebastiani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Sebastiani, L., Francini, A., Romeo, S., Ariani, A., Minnocci, A. (2014). Heavy Metals Stress on Poplar: Molecular and Anatomical Modifications. In: Gaur, R., Sharma, P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1620-9_15

Download citation

Publish with us

Policies and ethics