Skip to main content

A Current Overview of Regulatory RNAs in Staphylococcus Aureus

  • Chapter
Regulatory RNAs in Prokaryotes

Abstract

Staphylococcus aureus is a common commensal bacterial species that is usually found in the nose and on the skin of 30 % of healthy adults. However, the bacterium is a remarkably versatile pathogen that is one of the main causes of community as well as hospital-acquired infections (Cheung et al., 2004; Novick, 2003). S. aureus is responsible for systemic infections such as sepsis and endocarditis, which can be difficult to treat due to the acquisition of resistance towards numerous antibiotics in clinical use. S. aureus causes a wide spectrum of human diseases in part due to its ability to produce an array of virulence factors, which are mostly encoded by laterally acquired genomic regions, the so-called pathogenicity islands. These factors include surface proteins responsible for the adhesion and invasion of the host, exoproteins required for host immune evasion, and toxins involved in dissemination in host tissues and acquisition of nutrients (Novick, 2003). Redundancies exist to ensure that a productive infection still occurs even though one factor may be lost. In recent decades, many studies have been carried out to understand how S. aureus is able to coordinate the expression of a large panel of virulence factors at the appropriate time in order to facilitate successful infections (Novick and Geisinger, 2008). These works offer the possibility for developing anti-virulence therapies as alternative strategies for affecting the bacteria viability, i. e. by inhibiting the expression of the virulence factors that cause host damage or the interaction between the pathogen and the host (Clatworthy et al., 2007). Inhibiting virulence instead of viability may have little impact on human flora and result in weaker selective pressure for the development of antibiotic resistance. Hence, determining the regulatory networks and the dynamics involved in virulence and in fast adaptive responses are of prime importance to combating S. aureus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Qatouseh LF, Chinni SV, Seggewiss J, Proctor RA, Brosius J, Rozhdestvensky TS, Peters G, von Eiff C, Becker K (2010) Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med 88: 565–575.

    Article  PubMed  CAS  Google Scholar 

  • Anderson KL, Dunman PM (2009) Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus. Int J Microbiol ID 525491.

    Google Scholar 

  • Anderson KL, Roberts C, Disz T, Vonstein V, Hwang K, Overbeek R, Olson PD, Projan SJ, Dunman PM (2006) Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover. J Bacteriol 188: 6739–6756.

    Article  PubMed  CAS  Google Scholar 

  • Barrick JE, Breaker RR (2007) The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol 8: R239.

    Article  PubMed  Google Scholar 

  • Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 101: 6421–6426.

    Article  PubMed  CAS  Google Scholar 

  • Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P, Gaspin C, Romby P, Schrenzel J, Francois P (2010) Cartography of methicillin-resistant S. aureus transcripts: detection, orientation and temporal expression during growth phase and stress conditions. PLoS One 5: e10725.

    Article  PubMed  Google Scholar 

  • Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F (2000) Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6: 668–679.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff M, Dunman P, Kormanec J., Macapagal, D., Murphy, E., Mounts, W., Berger-Bachi, B., and Projan, S. (2004) Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J Bacteriol 186: 4085–4099.

    Article  PubMed  CAS  Google Scholar 

  • Blevins JS, Beenken KE, Elasri MO, Hurlburt BK, Smeltzer MS (2002) Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect Immun 70: 470–480.

    Article  PubMed  CAS  Google Scholar 

  • Blount KF, Wang JX, Lim J, Sudarsan N, Breaker RR (2007) Antibacterial lysine analogs that target lysine riboswitches. Nat Chem Biol 3: 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Bohn C, Rigoulay C, Bouloc, P (2007) No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiol 7: 10.

    Article  PubMed  Google Scholar 

  • Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P, Borezee-Durant E, Barbet R, Jacquet E, Jacq A, Gautheret D, Felden B, Vogel J, Bouloc P (2010) Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism. Nucleic Acids Res

    Google Scholar 

  • Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P. (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21: 1353–1366.

    Article  PubMed  CAS  Google Scholar 

  • Brantl S (2007) Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol 10: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Breaker RR (2009) Riboswitches: from ancient gene-control systems to modern drug targets. Future Microbiol 4: 771–773.

    Article  PubMed  Google Scholar 

  • Cassat J, Dunman PM, Murphy E, Projan SJ, Beenken KE, Palm KJ, Yang SJ, Rice KC, Bayles KW, Smeltzer MS (2006) Transcriptional profiling of a Staphylococcus aureus clinical isolate and its isogenic agr and sarA mutants reveals global differences in comparison to the laboratory strain RN6390. Microbiology 152: 3075–3090.

    Article  PubMed  CAS  Google Scholar 

  • Chabelskaya S, Gaillot O, Felden B (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog 6: e1000927.

    Article  PubMed  Google Scholar 

  • Chander P, Halbig KM, Miller JK, Fields CJ, Bonner HK, Grabner GK, Switzer RL, Smith JL (2005) Structure of the nucleotide complex of PyrR, the pyr attenuation protein from Bacillus caldolyticus, suggests dual regulation by pyrimidine and purine nucleotides. J Bacteriol 187: 1773–1782.

    Article  PubMed  CAS  Google Scholar 

  • Cheung AL, Bayer AS, Zhang G, Gresham H, Xiong YQ (2004) Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol Med Microbiol 40: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P (2010) Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest translation and promote mRNA degradation. PLoS Pathog 6: e1000809.

    Article  PubMed  Google Scholar 

  • Choonee N, Even S, Zig L, Putzer H (2007) Ribosomal protein L20 controls expression of the Bacillus subtilis infC operon via a transcription attenuation mechanism. Nucleic Acids Res 35: 1578–1588.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury S, Maris C, Allain FH, Narberhaus F (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25: 2487–2497.

    Article  PubMed  CAS  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3: 541–548.

    Article  PubMed  CAS  Google Scholar 

  • Collins JA, Irnov I, Baker S, Winkler WC (2007) Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev 21: 3356–3368.

    Article  PubMed  CAS  Google Scholar 

  • Condon C (2007) Maturation and degradation of RNA in bacteria. Curr Opin Microbiol 10: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Cramton SE, Schnell NF, Gotz F, Bruckner R (2000) Identification of a new repetitive element in Staphylococcus aureus. Infect Immun 68: 2344–2348.

    Article  PubMed  CAS  Google Scholar 

  • Dunman PM, Murphy E, Haney S, Palacios D, Tucker-Kellogg G, Wu S, Brown EL, Zagursky RJ, Shlaes D, Projan SJ (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183: 7341–7353.

    Article  PubMed  CAS  Google Scholar 

  • Fozo EM, Makarova KS, Shabalina SA, Yutin N, Koonin EV, Storz G (2010) Abundance of type I toxin-antitoxin systems in bacteria: searches for new candidates and discovery of novel families. Nucleic Acids Res 38: 3743–3759.

    Article  PubMed  CAS  Google Scholar 

  • Gefen O, Balaban NQ (2009) The importance of being persistent: heterogeneity of bacterial populations under antibiotic stress. FEMS Microbiol Rev 33: 704–717.

    Article  PubMed  CAS  Google Scholar 

  • Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP (2006) Inhibition of rot translation by RNAIII, a key feature of agr function. Mol Microbiol 61: 1038–1048.

    Article  PubMed  CAS  Google Scholar 

  • Geissmann T, Chevalier C, Cros MJ, Boisset S, Fechter P, Noirot C, Schrenzel J, Francois P, Vandenesch F, Gaspin C, Romby P (2009a) A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Res 37: 7239–7257.

    Article  PubMed  CAS  Google Scholar 

  • Geissmann T, Marzi S, Romby P (2009b) The role of mRNA structure in translational control in bacteria. RNA Biol 6: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Green NJ, Grundy FJ, Henkin TM (2010) The T box mechanism: tRNA as a regulatory molecule. FEBS Lett 584: 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2008) CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 36: W145–8.

    Article  PubMed  CAS  Google Scholar 

  • Grundy FJ, Haldeman MT, Hornblow GM, Ward JM, Chalker AF, Henkin TM (1997) The Staphylococcus aureus ileS gene, encoding isoleucyl-tRNA synthetase, is a member of the T-box family. J Bacteriol 179: 3767–3772.

    PubMed  CAS  Google Scholar 

  • Gutierrez-Preciado A, Jensen RA, Yanofsky C, Merino E (2005) New insights into regulation of the tryptophan biosynthetic operon in Gram-positive bacteria. Trends Genet 21: 432–436.

    Article  PubMed  CAS  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Huntzinger E, Boisset S, Saveanu C. Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P (2005) Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24: 824–835.

    Article  PubMed  CAS  Google Scholar 

  • Iost I, Dreyfus M (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14: 3252–3261.

    PubMed  CAS  Google Scholar 

  • Irnov I, Sharma CM, Vogel J, Winkler WC (2010) Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res, in press.

    Google Scholar 

  • Jelsbak L, Hemmingsen L, Donat S, Ohlsen K, Boye K, Westh H, Ingmer H, Frees D (2010) Growth phase-dependent regulation of the global virulence regulator Rot in clinical isolates of Staphylococcus aureus. Int J Med Microbiol 300: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110: 551–561.

    Article  PubMed  Google Scholar 

  • Klein DJ, Ferre-D’Amare AR (2006) Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313: 1752–1756.

    Article  PubMed  CAS  Google Scholar 

  • Klinkert B, Narberhaus F (2009) Microbial thermosensors. Cell Mol Life Sci 66: 2661–2676.

    Article  PubMed  CAS  Google Scholar 

  • Knezevic I, Bachem S, Sickmann A, Meyer HE, Stulke J, Hengstenberg W (2000) Regulation of the glucose-specific phosphotransferase system (PTS) of Staphylococcus carnosus by the antiterminator protein GlcT. Microbiology 146: 2333–2342.

    PubMed  CAS  Google Scholar 

  • Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9: 21–28.

    PubMed  CAS  Google Scholar 

  • Lee EJ, Groisman EA (2010) An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol Microbiol 76: 1020–1033.

    Article  PubMed  CAS  Google Scholar 

  • Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Livny J, Teonadi H, Livny M, Waldor MK (2008) High-throughput, kingdom-wide prediction and annotation of bacterial non-coding RNAs. PLoS One 3: e3197.

    Article  PubMed  Google Scholar 

  • Llopis PM, Jackson AF, Sliusarenko O, Surovtsev I, Heinritz J, Emonet T, Jacobs-Wagner C (2010) Spatial organization of the flow of genetic information in bacteria. Nature 466: 77–81.

    Article  CAS  Google Scholar 

  • Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J (2009) A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139: 770–779.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Turner RJ, Switzer RL (1996) Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon. Proc Natl Acad Sci U S A 93: 14462–14467.

    Article  PubMed  CAS  Google Scholar 

  • Marchais A, Naville M, Bohn C, Bouloc P, Gautheret D. (2009) Single-pass classification of all noncoding sequences in a bacterial genome using phylogenetic profiles. Genome Res 19: 1084–1092.

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 1843–1845.

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010a) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2010b) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463: 568–571.

    Article  PubMed  CAS  Google Scholar 

  • Marzi S, Fechter P, Chevalier C, Romby P, Geissmann T (2008) RNA switches regulate initiation of translation in bacteria. Biol Chem 389: 585–598.

    Article  PubMed  CAS  Google Scholar 

  • Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14: 4569–4577.

    PubMed  CAS  Google Scholar 

  • Mulhbacher J, Brouillette E, Allard M, Fortier LC, Malouin F, Lafontaine DA (2010) Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways. PLoS Pathog 6: e1000865.

    Article  PubMed  Google Scholar 

  • Murphy E (1985) Nucleotide sequence of ermA, a macrolide-lincosamide-streptogramin B determinant in Staphylococcus aureus. J Bacteriol 162: 633–640.

    PubMed  CAS  Google Scholar 

  • Nagata M, Kaito C, Sekimizu K (2008) Phosphodiesterase activity of CvfA is required for virulence in Staphylococcus aureus. J Biol Chem 283: 2176–2184.

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus F (2010) Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol 7

    Google Scholar 

  • Narberhaus F, Waldminghaus T, Chowdhury S (2006) RNA thermometers. FEMS Microbiol Rev 30: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Nechooshtan G, Elgrably-Weiss M, Sheaffer A, Westhof E, Altuvia S (2009) A pH-responsive riboregulator. Genes Dev 23: 2650–2662.

    Article  PubMed  CAS  Google Scholar 

  • Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48: 1429–1449.

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42: 541–564.

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Iordanescu S, Projan SJ, Kornblum J, Edelman I (1989) pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59: 395–404.

    Article  PubMed  CAS  Google Scholar 

  • Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh, S (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12: 3967–3975.

    PubMed  CAS  Google Scholar 

  • Opdyke JA, Kang JG, Storz G (2004) GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186: 6698–6705.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer V, Papenfort K, Lucchini S, Hinton JC, Vogel J (2009) Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat Struct Mol Biol 16: 840–846.

    Article  PubMed  CAS  Google Scholar 

  • Pichon C, Felden B (2005) Small RNA genes expressed from Staphylococcus aureus genomic and pathogenicity islands with specific expression among pathogenic strains. Proc Natl Acad Sci U S A 102: 14249–14254.

    Article  PubMed  CAS  Google Scholar 

  • Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4: 295–305.

    Article  PubMed  CAS  Google Scholar 

  • Proshkin S, Rahmouni AR, Mironov A, Nudler E (2010) Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328: 504–508.

    Article  PubMed  CAS  Google Scholar 

  • Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32: 150–158.

    Article  PubMed  CAS  Google Scholar 

  • Ramesh A, Winkler WC (2010) Magnesium-sensing riboswitches in bacteria. RNA Biol 7

    Google Scholar 

  • Rasmussen S, Nielsen HB, Jarmer H (2009) The transcriptionally active regions in the genome of Bacillus subtilis. Mol Microbiol 73: 1043–1057.

    Article  PubMed  CAS  Google Scholar 

  • Roberts C, Anderson KL, Murphy E, Projan SJ, Mounts W, Hurlburt B, Smeltzer M, Overbeek R, Disz T, Dunman PM (2006) Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J Bacteriol 188: 2593–2603.

    Article  PubMed  CAS  Google Scholar 

  • Romby P, Charpentier E (2010) An overview of RNAs with regulatory functions in gram-positive bacteria. Cell Mol Life Sci 67: 217–237.

    Article  PubMed  CAS  Google Scholar 

  • Seif E, Altman S (2008) RNase P cleaves the adenine riboswitch and stabilizes pbuE mRNA in Bacillus subtilis. RNA 14: 1237–1243.

    Article  PubMed  CAS  Google Scholar 

  • Serganov A (2009) The long and the short of riboswitches. Curr Opin Struct Biol 19: 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Serganov A, Huang L, Patel DJ (2009) Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458: 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Shahbabian K, Jamalli A, Zig L, Putzer H (2009) RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis. EMBO J 28: 3523–3533.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Y, Altuvia S, Margalit H, Biham O (2009) Stochastic analysis of the SOS response in Escherichia coli. PLoS One 4: e5363.

    Article  PubMed  Google Scholar 

  • Shimoni Y, Friedlander G, Hetzroni G, Niv G, Altuvia S, Biham O, Margalit H (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 3: 138.

    Article  PubMed  Google Scholar 

  • Smith AM, Fuchs RT, Grundy FJ, Henkin TM (2010) Riboswitch RNAs: Regulation of gene expression by direct monitoring of a physiological signal. RNA Biol 7

    Google Scholar 

  • Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73: 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Sudarsan N, Cohen-Chalamish S, Nakamura S, Emilsson GM, Breaker RR (2005) Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem Biol 12: 1325–1335.

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Arana A, Repoila F, Cossart P (2007) Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 10: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Tormo-Mas MA, Mir I, Shrestha A, Tallent SM, Campoy S, Lasa I, Barbe J, Novick RP, Christie GE, Penades JR (2010) Moonlighting bacteriophage proteins derepress staphylococcal pathogenicity islands. Nature 465: 779–782.

    Article  PubMed  CAS  Google Scholar 

  • Tormo MA, Ferrer MD, Maiques E, Ubeda C, Selva L, Lasa I, Calvete JJ, Novick RP, Penades JR (2008) Staphylococcus aureus pathogenicity island DNA is packaged in particles composed of phage proteins. J Bacteriol 190: 2434–2440.

    Article  PubMed  CAS  Google Scholar 

  • Vandenesch F, Projan SJ, Kreiswirth B, Etienne J, Novick RP (1993) Agr-related sequences in Staphylococcus lugdunensis. FEMS Microbiol Lett 111: 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Vogel J (2009) A rough guide to the non-coding RNA world of Salmonella. Mol Microbiol 71: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Waldminghaus T, Gaubig LC, Narberhaus F (2007) Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics 278: 555–564.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Henkin TM, Nikonowicz EP (2010) NMR structure and dynamics of the Specifier Loop domain from the Bacillus subtilis tyrS T box leader RNA. Nucleic Acids Res 38: 3388–3398.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM (2007) 6S RNA: a small RNA regulator of transcription. Curr Opin Microbiol 10: 164–168.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Saecker RM (2006) Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314: 1601–1603.

    Article  PubMed  CAS  Google Scholar 

  • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136: 615–628.

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99: 15908–15913.

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Nahvi A, Roth A, Collins AJ, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428: 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt MA, Wang W, Roux CM, Beasley FC, Heinrichs DE, Dunman PM, Magarvey NA (2010) Staphylococcus aureus Nonribosomal Peptide Secondary Metabolites Regulate Virulence. Science

    Google Scholar 

  • Yao Z, Barrick J, Weinberg Z, Neph S, Breaker R, Tompa M, Ruzzo WL (2007) A computational pipeline for high-throughput discovery of cis-regulatory noncoding RNA in prokaryotes. PLoS Comput Biol 3: e126.

    Article  PubMed  Google Scholar 

  • Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O’Toole GA (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 191: 210–219.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Caldelari, I. et al. (2012). A Current Overview of Regulatory RNAs in Staphylococcus Aureus. In: Regulatory RNAs in Prokaryotes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0218-3_3

Download citation

Publish with us

Policies and ethics