Skip to main content

Hypoxia in Tumours: Its Relevance, Identification, and Modification

  • Chapter
Current Topics in Clinical Radiobiology of Tumors

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

It is well known that cells irradiated under conditions of oxygen deprivation are more resistant to sparsely ionizing radiation than well-oxygenated cells (Hall 1988). Additional studies have now shown that oxygen-deficient cells exist in most animal solid tumours (Guichard et al. 1980; Moulder and Rockwell 1984). There is strong evidence to suggest that hypoxic cells can also be found in human tumours and that they are probably one of the major reasons for failure to locally control certain tumor types with conventional radiation therapy (Dische 1989; Overgaard 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams GE (1984) Radiosensitizers: a conference preview. Int J Radiat Oncol Biol Phys 10: 1181–1184

    PubMed  CAS  Google Scholar 

  • Adams GE, Stratford IJ, Godden J, Howells N (1989) Enhancement of the anti-tumor effect of melphalan in experimental mice by some vaso-active agents. Int J Radiat Oncol Biol Phys 16: 1137–1139

    PubMed  CAS  Google Scholar 

  • Adams GE, Bremner J, Edwards HS, Fielden EM, Naylor M, Stratford I J, Wood P (1992) Bioreductive drugs—dual function agents and related compounds. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth-century perspective, vol II. Academic, San Diego, p 802

    Google Scholar 

  • Awwad HK, Nagger M, Mocktar N, Barsoum M (1986) Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. Int J Radiat Oncol Biol Phys 12: 1329–1333

    PubMed  CAS  Google Scholar 

  • Beddell CR, Goodford PJ, Kneen G, White RD, Wilkinson S, Wootton R (1984) Substituted benzaldehydes designed to increase the oxygen affinity of human haemoglobin and inhibit the sickling of sickle erythrocytes. Br J Pharmacol 82: 397–407

    PubMed  CAS  Google Scholar 

  • Bentzen SM, Grau C (1991) Direct estimation of the fraction of hypoxic cells from tumour-control data obtained under aerobic and clamped conditions. Int J Radiat Biol 59: 1435–1440

    PubMed  CAS  Google Scholar 

  • Bremner JCM, Stratford I J, Bowler J, Adams GE (1990) Bioreductive drugs and the selective induction of tumour hypoxia. Br J Cancer 61: 717–721

    PubMed  CAS  Google Scholar 

  • Brown JM (1979) Evidence for acutely hypoxic cells in mouse tumours and a possible mechanism of reoxygenation. Br J Radiol 52: 650–656

    PubMed  CAS  Google Scholar 

  • Burton MA, Gray BN, Self GW, Heggie JC, Townsend PS (1985) Manipulation of experimental rat and rabbit liver tumor blood flow with angiotensin II. Cancer Res 45: 5390–5393

    PubMed  CAS  Google Scholar 

  • Chaplin DJ (1986) Potentiation of RSU-1069 tumour cytotoxicity by 5-hydroxytryptamine. Br J Cancer 54: 727–731

    PubMed  CAS  Google Scholar 

  • Chaplin DJ. Acker B (1987) The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069: evidence of therapeutic gain. Int J Radiat Oncol Biol Phys 13: 579–585

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Trotter MJ (1991) Chemical modifiers of tumour blood flow. In: Vaupel P, Jain RK (eds) Tumour blood supply and metabolic microenvironment. Gustav Fischer, Stuttgart, p 65

    Google Scholar 

  • Chaplin DJ, Durand RE, Olive PL (1986) Acute hypoxia in tumors: implication for modifiers of radiation effects. Int J Radiat Oncol Biol Phys 12: 1279–1282

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Olive PL, Durand RE (1987) Intermittent blood flow in a murine tumor: radiobiological effects. Cancer Res 47: 597–601

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Acker B, Olive PL (1989) Potentiation of the tumor cytotoxicity of melphalan by vasodilating drugs. Int J Radiat Oncol Biol Phys 16: 1131–1135

    PubMed  CAS  Google Scholar 

  • Chaplin DJ, Horsman MR, Aoki D (1990a) Nicotinamide, fluosol DA and carbogen: a strategy to reoxygenate acutely and chronically hypoxic cells in vivo. Br J Cancer 63: 109–113

    Google Scholar 

  • Chaplin DJ, Horsman MR, Trotter MJ (1990b) Effect of nicotinamide on the microregional heterogeneity of oxygen delivery within a murine tumour. J Natl Cancer Inst 82: 672–676

    PubMed  CAS  Google Scholar 

  • Chapman JD, Raleigh JA, Pedersen JE, Ngan J, Shum FY, Meeker BE, Urtasun RC (1979) Potentially three distinct roles for hypoxic cell sensitizers in the clinic. In: Okada S, Imamura M, Terashima T, Yamaguchi H (eds) Radiation research. Proceedings of the sixth international congress of radiation research. Tokyo, p 885

    Google Scholar 

  • Coleman CN (1988) Hypoxia in tumours: a paradigm for the approach to biochemical and physiological heterogeneity. J Natl Cancer Inst 80: 310–317

    PubMed  CAS  Google Scholar 

  • DeCree J, DeCock W, Guckens H, DeClerck F, Beerens M, Verhaegen H (1979) The rheological effects of cinnarizine and flunarizine in normal and pathological conditions. Angiology 30: 505–515

    CAS  Google Scholar 

  • Delides GS, Venizelos J, Revesz L (1988) Vascularization and curability of stage III and IV nasopharyngeal tumours. J Cancer Res Clin Oncol 114: 321–323

    PubMed  CAS  Google Scholar 

  • Denekamp J (1991) ARCON: accelerated radiotherapy with carbogen and nicotinamide. Eur Cancer News 4: 3–5

    Google Scholar 

  • Dische S (1989) The clinical consequences of the oxygen effect. In: Steel GG, Adams GE, Horwich A (eds) The biological basis of radiotherapy, 2nd edn. Elsevier Science, Amsterdam, p 135

    Google Scholar 

  • Evelhoch JL, Bissery MC, Chabot GG, Simpson NE, McCoy CL,Heilbrun LK, Corbett TH (1988) Flavone acetic acid (NSC 34512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res 48: 4149–4155

    Google Scholar 

  • Evelhoch JL, Simpson NE, Valeriote FA, Corbett TH (1990) 31-P and 2-H MRS studies of flavone acetic acid and analogues. In: Evelhoch JL, Negendank W, Valeriote FA, Baker LH (eds) Magnetic resonance in experimental and clinical oncology. Kluwer Academic, Boston, p 121

    Google Scholar 

  • Fenton BM, Rofstad EK, Degnar FL, Sutherland RM (1988) Cryospectrophotometric determination of tumour intra-vascular oxyhemoglobin saturations: dependence on vascular geometry and tumour growth. J Natl Cancer Inst 80: 1612–1619

    PubMed  CAS  Google Scholar 

  • Folkman J (1976) The vascularization of tumours. Sei Am 234: 58–73

    CAS  Google Scholar 

  • Franko A J (1986) Misonidazole and other hypoxic markers: metabolism and applications. Int J Radiat Oncol Biol Phys 12: 1195–1202

    PubMed  CAS  Google Scholar 

  • Gatenby RA, Kessler HB, Rosenblaum JS, Coia LR, Moldofsky PJ, Hartz WH, Broder GJ (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14: 831–838

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Urano M, Koutcher J, Fellenz MP, Kahn J (1989) Relationship between energy status, hypoxic cell fraction, and hyperthermic sensitivity in a murine fibrosarcoma. Radiat Res 117: 448–458

    PubMed  CAS  Google Scholar 

  • Grau C, Horsman MR, Overgaard J (1992) Influences of carboxyhemoglobin level on tumour growth, blood flow and radiation response in an experimental model. Int J Radiat Oncol Biol Phys 22: 421–424

    PubMed  CAS  Google Scholar 

  • Guichard M, Courdi A, Malaise EP (1980) Experimental data on the radiobiology of solid tumours. Eur J Radiother 1: 171–191

    Google Scholar 

  • Hafström L, Nobin A, Persson B, Sundqvist K (1980) Effects of catecholamines on cardiovascular response and blood flow distribution to normal tissue and liver tumours in rats. Cancer Res 40: 481–485

    PubMed  Google Scholar 

  • Hall EJ (1988) Radiobiology for the radiologist. Harper and Row, Philadelphia

    Google Scholar 

  • Henderson BW, Waldow SM, Potter WR, Dougherty TJ (1985) Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res 45: 6071–6077

    Google Scholar 

  • Herman TS, Teicher BA, Coleman CN (1990) Interaction of SR-4233 with hyperthermia and radiation in the FSallC murine fibrosarcoma tumour system in vitro and in vivo. Cancer Res 50: 5055–5059

    PubMed  CAS  Google Scholar 

  • Hiraoka M, Hahn GM (1990) Changes in pH and blood flow induced by glucose, and their effects on hyperthermia with or without BCNU in RIF-1 tumours. Int J Hyperthermia 6: 97–103

    PubMed  CAS  Google Scholar 

  • Hirst DG, Wood PJ (1989) Chlorophenoxyacetic acid derivatives as hemoglobin modifiers and tumour radio-sensitizers. Int J Radiat Oncol Biol Phys 16: 1183–1186

    PubMed  CAS  Google Scholar 

  • Höckel M, Knoop C, Schienger K, Vorndran B, Mitz M, Knapstein PG, Vaupel P (1993) Intratumoral p02 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol (to be publ.)

    Google Scholar 

  • Horsman MR (1992) Modifiers of tumor blood supply. In: Urano M, Douple EB (eds) Hyperthermia and oncology. VSP, Netherlands

    Google Scholar 

  • Horsman MR (1992b) Carbogen and nicotinamide: expectations too high? Radiother Oncol 24: 121–122

    PubMed  CAS  Google Scholar 

  • Horsman MR (1992c) Overcoming tumour radiation resistance resulting from acute hypoxia. Eur J Cancer 28A: 717–718

    Google Scholar 

  • Horsman MR, Winther J (1989) Vascular effects of photo-dynamic therapy in an intraocular retinoblastoma-like tumour. Acta Oncol 28: 693–697

    PubMed  CAS  Google Scholar 

  • Horsman MR, Brown JM, Hirst VK, Lemmon MJ, Wood PJ, Dunphy EP, Overgaard J (1988a) Mechanism of action of the selective tumor radiosensitizer nicotinamide. Int J Radiat Oncol Biol Phys 15: 685–690

    PubMed  CAS  Google Scholar 

  • Horsman MR, Overgaard J, Chaplin DJ (1988b). The interaction between RSU-1069, Hydralazine and hyper-thermia in a C3H mammary carcinoma as assessed by tumour growth delay. Acta Oncol 27: 861–862

    PubMed  CAS  Google Scholar 

  • Horsman MR, Chaplin DJ, Brown JM (1989a) Tumor radiosensitization by nicotinamide: a result of improved blood perfusion and oxygenation. Radiat Res 118: 139–150

    PubMed  CAS  Google Scholar 

  • Horsman MR, Christensen KL, Overgaard J (1989b) Hydralazine-induced enhancement of hyperthermic damage in a C3H mammary carcinoma in vivo. Int J Hyperthermia 5: 123–136

    PubMed  CAS  Google Scholar 

  • Horsman MR, Hansen PV, Overgaard J (1989c) Radiosensi-tization by nicotinamide in tumors and normal tissues: the importance of tissue oxygenation status. Int J Radiat Oncol Biol Phys 16: 1273–1276

    PubMed  CAS  Google Scholar 

  • Horsman MR, Chaplin DJ, Overgaard J (1990a) Combination of nicotinamide and hyperthermia to eliminate radioresistant chronically and acutely hypoxic tumor cells. Cancer Res 50: 7430–7436

    PubMed  CAS  Google Scholar 

  • Horsman MR, Wood PJ, Chaplin DJ, Brown JM, Overgaard J (1990b) The potentiation of radiation damage by nicotin-amide in the SCCVII tumour in vivo. Radiother Oncol 18: 49–57

    PubMed  CAS  Google Scholar 

  • Horsman MR, Chaplin DJ, Overgaard J (1991) The effect of combining flavone acetic acid and hyperthermia on the growth of a C3H mammary carcinoma in vivo. Int J Radiat Biol 60: 385–388

    PubMed  CAS  Google Scholar 

  • Horsman MR, Kristjansen PEG, Mizuno M, Christensen K, Chaplin DJ, Quistorff B, Overgaard J (1992) Biochemical and physicological changes induced by nicotinamide in a C3H mouse mammary carcinoma and CDF1 mice. Int J Radiat Oncol Biol Phys 22: 451–454

    PubMed  CAS  Google Scholar 

  • Intaglietta M, Myers RR, Gross JF, Reinhold HS (1977) Dynamics of microvascular flow in implanted mouse mammary tumours. Bibl Anat 15: 237–276

    Google Scholar 

  • Jain RK (1988) Determinants of tumor blood flow: a review. Cancer Res 48: 2641–2658

    PubMed  CAS  Google Scholar 

  • Jirtle RL (1988) Chemical modification of tumour blood flow. Int J Hyperthermia 4: 355–371

    PubMed  CAS  Google Scholar 

  • Jirtle R, Clifton KH, Rankin JHG (1978) Effects of several vasoactive drugs on the vascular resistance of MT-W9B tumors in W/Fu rats. Cancer Res 38: 2385–2390

    PubMed  CAS  Google Scholar 

  • Kaelin WG, Shrivastava S, Shand DG, Jirtle RL (1982) Effect of verapamil on malignant tissue blood flow in SMT-2A tumor-bearing rats. Cancer Res 42: 3944–3949

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Moehle R, Vaupel P (1989a) Substantial enhancement of tumor hyperthermic response by tumor necrosis factor. In: Sugahara T, Saito M (eds) Hyperthermic oncology, vol 1. Summary papers. Taylor & Francis, London, p 258

    Google Scholar 

  • Kallinowski F, Schaefer C, Tyler G, Vaupel P (1989b) In vivo targets of recombinant human tumour necrosis factoralpha: blood flow, oxygen consumption and growth of isotransplanted rat tumours. Br J Cancer 60: 555–560

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Zander R, Höckel M, Vaupel P (1990) Tumor tissue oxygenation as evaluated by computerised— p02—histography. Int J Radiat Oncol Biol Phys 19: 953–961

    PubMed  CAS  Google Scholar 

  • Kallman RF, Denardo GL, Stasch MJ (1972) Blood flow in irradiated mouse sarcoma as determined by the clearance of xenon—133. Cancer Res 32: 483–490

    PubMed  CAS  Google Scholar 

  • Kalmus J, Okunieff P, Vaupel P (1990) Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSall tumors. Cancer Res 50: 15–19

    PubMed  CAS  Google Scholar 

  • Kjellen E, Joiner MC, Collier JM, Johns H, Rojas A (1991) A therapeutic benefit from combining normobaric carbogen or oxygen with nicotinamide in fractionated x-ray treatments. Radiother Oncol 22; 81–91

    PubMed  CAS  Google Scholar 

  • Knapp WH, Debatin J, Layer K, Helus F, Altmann A, Sinn HJ, Ostertag H (1985) Selective drug-induced reduction of blood flow in tumour transplants. Int J Radiat Oncol Biol Phys 11: 1357–1366

    PubMed  CAS  Google Scholar 

  • Kolstad P (1968) Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest 106: 145–157

    CAS  Google Scholar 

  • Koutcher JA, Barnett D, Kornblith AB, Cowburn D, Brady TJ, Gerweck LE (1990) Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity. Int J Radiat Oncol Biol Phys 18: 1429–1435

    PubMed  CAS  Google Scholar 

  • Kristjansen PEG, Pederson EJ, Quistorff B, Elling F, Spang-Thomsen M (1990) Early effects of radiotherapy in small cell lung cancer xenografts monitored by 31-P- magnetic resonance spectroscopy and biochemical analysis. Cancer Res 50: 4880–4884

    PubMed  CAS  Google Scholar 

  • Lauk S, Skates S, Goodman M, Suit HD (1989) Morphometric study of the vascularity of oral squamous cell carcinomas and its relation to outcome of radiation therapy. Eur J Cancer Clin Oncol 25: 1431–1440

    PubMed  CAS  Google Scholar 

  • Mattson J, Appelgren L, Karlsson L, Peterson HI (1978) Influence of vasoactive drugs and ischaemia on intratumour blood flow distribution. Eur J Cancer 14: 761–764

    PubMed  CAS  Google Scholar 

  • McEwan AJB 91989) Positron-emission tomography and predicting tumor treatment response. In: Chapman JD, Peters LJ, Withers HR (eds) Prediction of tumor treatment response. Pergamon, New York, p 277

    Google Scholar 

  • McNally NJ, Sheldon PW (1977) The effect of radiation on tumour growth delay, cell survival, and cure of the animal using a single tumour system. Br J Radiol 50: 321–328

    PubMed  CAS  Google Scholar 

  • Menke H, Vaupel P (1988) Effect of injectable or inhalational anaesthetics and of neuroleptic, neuroleptanalgesia and sedative agents on tumour blood flow. Radiat Res 114: 64–76

    PubMed  CAS  Google Scholar 

  • Moulder JE, Martin DF (1984) Hypoxic fraction determina-tions in the BA1112 rat sarcoma: variations within and among assay techniques. Radiat Res 98: 536–548

    PubMed  CAS  Google Scholar 

  • Moulder JE, Rockwell S (1984) Hypoxic fractions of solid tumors. Int J Radiat Oncbl Biol Phys 10: 695–712

    CAS  Google Scholar 

  • Miiller-Klieser W, Kröger M, Wallenta S, Rofstad EK (1991) Comparative imaging of structure and metabolites in tumours. Int J Radiat Biol 60: 147–159

    Google Scholar 

  • Okunieff P (1990) Relationship of 31-P NMR measurements to tumor biology. In: Evelhoch JL, Negendank W, Valeriote FA, Baker LH (eds) Magnetic resonance in experimental and clinical oncology. Kluwer Academic, Boston, p 23

    Google Scholar 

  • Overgaard J (1980) Effect of misonidazole and hyperthermia on the radiosensitivity of a C3H mammary carcinoma and its surrounding normal tissue. Br J Cancer 41: 10–21

    PubMed  CAS  Google Scholar 

  • Overgaard J (1989) Sensitization of hypoxic tumour cells—clinical experience. Int J Radiat Biol 56: 801–811

    PubMed  CAS  Google Scholar 

  • Overgaard J (1993) Modification of tumour hypoxia. A meta-analysis of controlled clinical trials. Br J Radiol (to be publ. )

    Google Scholar 

  • Overgaard J, Nielsen OS (1980) The role of tissue environ-mental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann NY Acad Sei 335: 254–280

    CAS  Google Scholar 

  • Overgaard J, Nielsen OS, Lindegaard JC (1987) Biological basis for rational design of clinical treatment with combined hyperthermia and radiation. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Martinus Nijhoff, Amsterdam, p 54

    Google Scholar 

  • Rasey JS, Evans ML (1991) Detecting hypoxia in human tumors. In: Vaupel P, Jain RK (eds) Tumor blood supply and metabolic microenvironment. Gustav Fischer, Stuttgart, p 187

    Google Scholar 

  • Rasey JS, Koh W-J, Grierson JR, Grunbaum Z, Krohn KA (1989) Radiolabelled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Radiat Oncol Biol Phys 17: 985–991

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Blackiewicz B, Block A (1977) Oxygenation and reoxygenation in “sandwich” tumours. Bibl Anat 15: 270–272

    PubMed  Google Scholar 

  • Revesz L, Siracka E, Siracky J, Delides G, Pavlaki K (1989) Variation of vascular density within and between tumors of the uterine cervix and its predictive value for radiotherapy. Int J Radiat Oncol Biol Phys 16: 1161–1163

    PubMed  CAS  Google Scholar 

  • Rockwell S (1985) Use of a perfluorochemical emulsion to improve oxygenation in a solid tumour. Int J Radiat Oncol Biol Phys 11: 97–103

    PubMed  CAS  Google Scholar 

  • Rockwell S, Kelley M, Irvin CG, Hughes CS, Porter E, Yabuki H, Fisher JJ (1991) Modulation of tumor oxygenation and radiosensitivity by a perfluorooctylbromide emulsion. Radiother Oncol 22: 92–98

    PubMed  CAS  Google Scholar 

  • Rofstad EK, DeMuth P, Fenton BM, Ceckler TL, Sutherland — RM (1989) 32-P NMR spectroscopy and Hb02 cryospectrophotometry in prediction of tumor radioresistance caused by hypoxia. Int J Radiat Oncol Biol Phys 16: 919–923

    Google Scholar 

  • Rojas A (1991) Radiosensitization with normobaric oxygen and carbogen. Radiother Oncol [Suppl] 20: 65–70

    Google Scholar 

  • Sevick EM, Jain RK (1989) Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure. Cancer Res 49: 3506–3512

    PubMed  CAS  Google Scholar 

  • Shrivastava S, Joines WT, Jirtle RL (1985) Effect of 5-hydroxytryptamine on tissue blood flow and microwave heating of rat tumors. Cancer Res 45: 3203–3208

    Google Scholar 

  • Siemann DW (1990) Tumour size: a factor influencing the isoeffect analysis of tumour response to combined modalities. Br J Cancer 41 [Suppl IV]: 294–298

    Google Scholar 

  • Siemann DW, Alliet KL, Macler LM (1989) Manipulations in the oxygen transport capacity of blood as a means of sensitizing tumors to radiation therapy. Int J Radiat Oncol Biol Phys 16: 1169–1172

    PubMed  CAS  Google Scholar 

  • Song CW (1984) Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res 44 [Suppl]: 4721s–730s

    PubMed  CAS  Google Scholar 

  • Star WM, Marijnissen HPA, van den Berg-Blok AE, Versteeg J AC, Franken KAP, Reinhold HS (1986) Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res 46: 2532–2540

    CAS  Google Scholar 

  • Streffer C, van Beuningen D, Gross E, Eigler FW, Pelzer T (1989) Determination of DNA, micronuclei and vascular density in human rectum carcinomas. In: Chapman JD, Peters LJ, Withers HR (eds) Prediction of tumour treat-ment response. Pergamon, London, p 217

    Google Scholar 

  • Streffer C, Zölzer F, Tamulevicius P (1992) Studies on combined treatment with X-rays, hyperthermia and hypoxic cell sensitizers on tumors. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth-century perspective, vol II. Academic, San Diego, p 1021

    Google Scholar 

  • Suit HD, Marshall N, Woerner D (1972) Oxygen, oxygen plus carbon dioxide, and radiation therapy of a mouse mammary carcinoma. Cancer 30: 1154–1158

    PubMed  CAS  Google Scholar 

  • Sun JR, Brown JM (1989) Enhancement of the antitumor effect of flavone acetic acid by the bioreductive cytotoxic drug SR 4233 in a murine carcinoma. Cancer Res 49: 5664–5670

    PubMed  CAS  Google Scholar 

  • Sutherland RM, Franko AJ (1980) On the nature of the radiobiological hypoxic fraction in tumors. Int J Radiat Oncol Biol Phys 6: 117–120

    PubMed  CAS  Google Scholar 

  • Suzuki M, Hori K, Abe I, Saito S, Sato H (1981) A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II. J Natl Cancer Inst 67: 663–669

    PubMed  CAS  Google Scholar 

  • Tamulevicius P, Luscher G, Streffer C (1987) Effects on intermediary metabolism in mouse tissues by Ro-03-8799. Br J Cancer 56: 315–320

    PubMed  CAS  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9: 539–549

    PubMed  CAS  Google Scholar 

  • Timothy AR, Overgaard J (1984) In vivo radiosensitization by nimorazole and hyperthermia. In: Overgaard J (ed) Hyperthermic oncology, vol 1. Summary Papers. Taylor amp; Francis, London, p 309

    Google Scholar 

  • Trotter MJ, Chaplin DJ, Olive PL (1991a) Possible mechanisms for intermittent blood flow in the murine SCCVII carcinoma. Int J Radiat Biol 60: 139–146

    PubMed  CAS  Google Scholar 

  • Trotter MJ, Chaplin DJ, Olive PL (1991b) Effect of angiotensin II on intermittent tumour blood flow and acute hypoxia in the murine SCCVII carcinoma. Eur J Cancer 27: 887–893

    PubMed  CAS  Google Scholar 

  • Urano M, Cunningham M, Rice L (1980) Effect of general anaesthetics on the thermal response of normal and malignant murine tissues. Int J Radiat Biol 38: 667–671

    CAS  Google Scholar 

  • Urano M, Montoya V, Booth A (1983) Effect of hyperglycemia on the thermal response of murine normal and tumor tissue. Cancer Res 43: 453–455

    PubMed  CAS  Google Scholar 

  • Urtasun RC (1992) Tumor hypoxia, its clinical detection and relevance. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth- century perspective, vol II. Academic, San Diego, p 725

    Google Scholar 

  • Van Putten LM, Kallman RF (1968) Oxygenation status of a transplantable tumour during fractionated radiation therapy. J Natl Cancer Inst 40: 441–151

    PubMed  Google Scholar 

  • Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. CRC Press, Boca Raton, Fl., p 143

    Google Scholar 

  • Vaupel P, Miiller-Klieser W (1992) Oxygenation and bioenergetic status of human tumors. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth-century perspective, vol II. Academic, San Diego, p 772

    Google Scholar 

  • Vaupel P, Grunewald WA, Manz R, Sowa W (1978) Intracapillary Hb02 saturation in tumor tissue of DS-carcinosarcoma during normoxia. Adv Exp Med Biol 94: 367–375

    Google Scholar 

  • Vaupel P, Manz R, Miiller-Klieser W, Grunewald WA (1979) Intracapillary Hb02 saturation in malignant tumors during normoxia and hyperoxia. Microvasc Res 17: 181–191

    PubMed  CAS  Google Scholar 

  • Vaupel P, Fortmeyer HP, Runkel S, Kallinowski F (1987) Blood flow, oxygen consumption and tissue oxygenation of human breast cancer xenografts in nude mice. Cancer Res 47: 3496–3503

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989a) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465

    PubMed  CAS  Google Scholar 

  • Vaupel P, Okunieff P, Kallinowski F, Neuringer LJ (1989b) Correlations between 31P-NMR spectroscopy and tissue 02 tension measurements in a murine fibrosarcoma. Radiat Res 120: 477–493

    PubMed  CAS  Google Scholar 

  • Vaupel P, Schienger K, Höckel M (1991) Blood flow and oxygenation of human tumors. In: Vaupel P, Jain RK (eds) Tumor blood supply and metabolic microenvironment. Gustav Fischer, Stuttgart, p 165

    Google Scholar 

  • Waldow SM, Dougherty TJ (1984) Interaction of hyperthermia and photoradiation therapy. Radiat Res 97: 380–385

    PubMed  CAS  Google Scholar 

  • Warren BA (1979) The vascular morphology of tumors. In: Peterson H-I (ed) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental tumors. CRC Press, Boca Raton, Fl., p 1

    Google Scholar 

  • Wiig H, Gadeholt G (1985) Interstitial fluid pressure and hemodynamics in a sarcoma implanted in the rat tail. Microvasc Res 29: 176–189

    PubMed  CAS  Google Scholar 

  • Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumor pH to the treatment of malignant disease. Radiother Oncol 2: 343–366

    PubMed  CAS  Google Scholar 

  • Wood PJ, Hirst DG (1989) Calcium antagonists as radiation modifiers: site specificity in relation to tumor response. Int J Radiat Oncol Biol Phys 16: 1141–1144

    PubMed  CAS  Google Scholar 

  • Wood PJ, Counsell CJR, Bremner JCM, Horsman MR, Adams GE (1991) The measurement of radiosensitizer- induced changes in mouse tumour metabolism by 31-P magnetic resonance spectroscopy. Int J Radiat Oncol Biol Phys 20: 291–294

    PubMed  CAS  Google Scholar 

  • Young SD, Hill RP (1988) Hypoxia induces DNA over- replication and enhances metastatic potential of murine tumour cells. Proc Natl Acad Sci USA 85: 9533–9537

    PubMed  CAS  Google Scholar 

  • Young SD, Hill RP (1990) Effects of reoxygenation on cells from hypoxic regions of solid tumours: anticancer drug sensitivity and metastatic potential. J Natl Cancer Inst 82: 371–380

    PubMed  CAS  Google Scholar 

  • Zackheim HS, Vasily DB, Westphal ML, Hastings CW (1981) Reactions to niacinamide. J Am Acad Dermatol 4: 736–737

    Google Scholar 

  • Zanelli GD, Lucas PB, Fowler JF (1975) The effect of anaesthetics on blood perfusion I. Br J Cancer 32: 380–390

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horsman, M.R. (1993). Hypoxia in Tumours: Its Relevance, Identification, and Modification. In: Beck-Bornholdt, HP. (eds) Current Topics in Clinical Radiobiology of Tumors. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84918-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84918-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84920-6

  • Online ISBN: 978-3-642-84918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics