Skip to main content

Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 923))

Abstract

Tumor hypoxia is a hallmark of solid malignant tumor growth, profoundly influences malignant progression and contributes to the development of therapeutic resistance. Pathogenesis of tumor hypoxia is multifactorial, with contributions from both acute and chronic factors. Spatial distribution of hypoxia within tumors is markedly heterogeneous and often changes over time, e.g., during a course of radiotherapy. Substantial changes in the oxygenation status can occur within the distance of a few cell layers, explaining the inability of currently used molecular imaging techniques to adequately assess this crucial trait. Due to the possible importance of tumor hypoxia for clinical decision-making, there is a great demand for molecular tools which may provide the necessary resolution down to the single cell level. Exogenous and endogenous markers of tumor hypoxia have been investigated for this purpose. Their potential use may be greatly enhanced by multiparametric in situ methods in experimental and human tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206

    Article  PubMed  Google Scholar 

  2. Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(Suppl 3):21–26

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26(2):225–239

    Article  CAS  PubMed  Google Scholar 

  4. Vaupel P, Mayer A (2014) Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol 812:19–24

    Article  CAS  PubMed  Google Scholar 

  5. Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80(4):965–968

    Article  PubMed  Google Scholar 

  6. Vaupel P, Mayer A (2014) Imaging tumor hypoxia: blood-borne delivery of imaging agents is fundamentally different in hypoxia subtypes. J Innov Opt Health Sci 07(02):1330005

    Article  Google Scholar 

  7. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9(8):1221–1236

    Article  CAS  PubMed  Google Scholar 

  8. Epel B, Redler G, Halpern H (2014) How in vivo EPR measures and images oxygen. Adv Exp Med Biol 812:113–119

    Article  PubMed  PubMed Central  Google Scholar 

  9. Swartz HM, Williams BB, Zaki BI et al (2014) Clinical EPR: unique opportunities and some challenges. Acad Radiol 21(2):197–206

    Article  PubMed  PubMed Central  Google Scholar 

  10. Horsman MR, Mortensen LS, Petersen JB et al (2012) Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9(12):674–687

    Article  CAS  PubMed  Google Scholar 

  11. Ljungkvist AS, Bussink J, Kaanders JH et al (2007) Dynamics of tumor hypoxia measured with bioreductive hypoxic cell markers. Radiat Res 167(2):127–145

    Article  CAS  PubMed  Google Scholar 

  12. Kleiter MM, Thrall DE, Malarkey DE et al (2006) A comparison of oral and intravenous pimonidazole in canine tumors using intravenous CCI-103F as a control hypoxia marker. Int J Radiat Oncol Biol Phys 64(2):592–602

    Article  CAS  PubMed  Google Scholar 

  13. Ljungkvist AS, Bussink J, Kaanders JH et al (2006) Dynamics of hypoxia, proliferation and apoptosis after irradiation in a murine tumor model. Radiat Res 165(3):326–336

    Article  CAS  PubMed  Google Scholar 

  14. Yaromina A, Kroeber T, Meinzer A et al (2011) Exploratory study of the prognostic value of microenvironmental parameters during fractionated irradiation in human squamous cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 80(4):1205–1213

    Article  PubMed  Google Scholar 

  15. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12(12):5447–5454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang BH, Semenza GL, Bauer C et al (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–C1180

    CAS  PubMed  Google Scholar 

  17. Jewell UR, Kvietikova I, Scheid A et al (2001) Induction of HIF-1α in response to hypoxia is instantaneous. FASEB J 15(7):1312–1314

    CAS  PubMed  Google Scholar 

  18. Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  19. Talks KL, Turley H, Gatter KC et al (2000) The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haugland HK, Vukovic V, Pintilie M et al (2002) Expression of hypoxia-inducible factor-1α in cervical carcinomas: correlation with tumor oxygenation. Int J Radiat Oncol Biol Phys 53(4):854–861

    Article  CAS  PubMed  Google Scholar 

  21. Zhong H, Mabjeesh N, Willard M et al (2002) Nuclear expression of hypoxia-inducible factor 1alpha protein is heterogeneous in human malignant cells under normoxic conditions. Cancer Lett 181(2):233–238

    Article  CAS  PubMed  Google Scholar 

  22. Dengler VL, Galbraith MD, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1):1–15

    Article  CAS  PubMed  Google Scholar 

  23. Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Airley R, Loncaster J, Davidson S et al (2001) Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 7(4):928–934

    CAS  PubMed  Google Scholar 

  25. Loncaster JA, Harris AL, Davidson SE et al (2001) Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 61(17):6394–6399

    CAS  PubMed  Google Scholar 

  26. Mayer A, Wree A, Höckel M et al (2004) Lack of correlation between expression of HIF-1α protein and oxygenation status in identical tissue areas of squamous cell carcinomas of the uterine cervix. Cancer Res 64(16):5876–5881

    Article  CAS  PubMed  Google Scholar 

  27. Mayer A, Höckel M, Vaupel P (2005) Carbonic anhydrase IX expression and tumor oxygenation status do not correlate at the microregional level in locally advanced cancers of the uterine cervix. Clin Cancer Res 11(20):7220–7225

    Article  CAS  PubMed  Google Scholar 

  28. Mayer A, Höckel M, Wree A et al (2005) Microregional expression of glucose transporter-1 and oxygenation status: lack of correlation in locally advanced cervical cancers. Clin Cancer Res 11(7):2768–2773

    Article  CAS  PubMed  Google Scholar 

  29. Dellas K, Bache M, Pigorsch SU et al (2008) Prognostic impact of HIF-1α expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 184(3):169–174

    Article  PubMed  Google Scholar 

  30. Mayer A, Höckel M, Wree A et al (2008) Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. Cancer Res 68(12):4719–4726

    Article  CAS  PubMed  Google Scholar 

  31. Mayer A, Vaupel P (2011) Hypoxia markers and their clinical relevance. In: Osinsky S, Friess H, Vaupel P (eds) Tumor hypoxia in the clinical setting. Akademperiodyka, Kiev, Ukraine, pp 187–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vaupel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Vaupel, P., Mayer, A. (2016). Tumor Hypoxia: Causative Mechanisms, Microregional Heterogeneities, and the Role of Tissue-Based Hypoxia Markers. In: Luo, Q., Li, L., Harrison, D., Shi, H., Bruley, D. (eds) Oxygen Transport to Tissue XXXVIII. Advances in Experimental Medicine and Biology, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-319-38810-6_11

Download citation

Publish with us

Policies and ethics