Skip to main content

Hypoxia and Gene Expression

  • Chapter
  • First Online:
Hypoxia and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Analysis of gene expression is a promising approach to understand tumor hypoxia and to relate biology to prognosis and response to therapy. Understanding the response to hypoxia of every component of the tumor mass is indispensable to understand the biology of the system. However, the plasticity and distribution of hypoxic areas make it difficult to gauge tumor hypoxia by combining the information of individual components. Global information on tumor gene expression revealed by the analysis of the transcriptome of the tumor mass provides a global view of the hypoxic status of the tissue. The global and analytic assessment of tumor hypoxia, revealed by the whole tumor mass or by its individual components, will be discussed with particular emphasis on tumor-infiltrating leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeel T, Helleputte T, Van de PY et al (2010) Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26:392–398

    PubMed  CAS  Google Scholar 

  • Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, Mingari MC, Varesio l, Moretta l, Bosco MC, Vitale M (2013) Hypoxia downregulates the expression of activating receptors involved in NK cell-mediated target cell killing without affecting ADCC. Eur J Immunol. doi: 10.1002/eji.201343448 [Epub ahead of print]

    Google Scholar 

  • Battaglia F, Delfino S, Merello E et al (2008) Hypoxia transcriptionally induces macrophage-inflammatory protein-3{alpha}/CCL-20 in primary human mononuclear phagocytes through nuclear factor (NF)-{kappa}B. J Leukoc Biol 83:648–662

    PubMed  CAS  Google Scholar 

  • Ben Baruch A (2006) Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16:38–52

    PubMed  CAS  Google Scholar 

  • Benita Y, Kikuchi H, Smith AD et al (2009) An integrative genomics approach identifies Hypoxia Inducible Factor-1 (HIF-1)-target genes that form the core response to hypoxia. Nucleic Acids Res 37:4587–4602

    PubMed  CAS  Google Scholar 

  • Bennaceur K, Chapman J, Brikci-Nigassa L et al (2008) Dendritic cells dysfunction in tumour environment. Cancer Lett 272:186–196

    PubMed  CAS  Google Scholar 

  • Blengio F, Raggi F, Pierobon D et al (2013) The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells. Immunobiology 218(1):76–89

    PubMed  CAS  Google Scholar 

  • Bosco MC, Varesio L (2010) Monocytic cell gene regulation by the hypoxic synovial environment in juvenile idiopathic arthritis: implications for disease pathogenesis. J Clin Rheumatol Musculoskel Med 1:47–55

    Google Scholar 

  • Bosco MC, Varesio L (2012) Dendritic cell reprogramming by the hypoxic environment. Immunobiology 217:1241–1249

    PubMed  CAS  Google Scholar 

  • Bosco MC, Puppo M, Pastorino S et al (2004a) Hypoxia selectively inhibits monocyte chemoattractant protein-1 production by macrophages. J Immunol 172:1681–1690

    CAS  Google Scholar 

  • Bosco MC, Reffo G, Puppo M et al (2004b) Hypoxia inhibits the expression of the CCR5 chemokine receptor in macrophages. Cell Immunol 228:1–7

    CAS  Google Scholar 

  • Bosco MC, Puppo M, Santangelo C et al (2006) Hypoxia modifies the transcriptome of primary human monocytes: modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene. J Immunol 177:1941–1955

    PubMed  CAS  Google Scholar 

  • Bosco MC, Delfino S, Ferlito F et al (2008a) Hypoxic synovial environment and expression of macrophage inflammatory protein MIP-3a/CCL20 in Juvenile Idiopathic Arthritis. Arthritis Rheum 58:1833–1838

    CAS  Google Scholar 

  • Bosco MC, Puppo M, Blengio F et al (2008b) Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Immunobiology 213:733–749

    CAS  Google Scholar 

  • Bosco MC, Pierobon D, Blengio F et al (2011) Hypoxia modulates the gene expression profile of immunoregulatory receptors in human mature dendritic cells: identification of TREM-1 as a novel hypoxic marker in vitro and in vivo. Blood 117:2625–2639

    PubMed  CAS  Google Scholar 

  • Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995

    PubMed  CAS  Google Scholar 

  • Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58:1152–1167

    PubMed  CAS  Google Scholar 

  • Brown JM, William WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    PubMed  CAS  Google Scholar 

  • Buffa FM, Harris AL, West CM et al (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102:428–435

    PubMed  CAS  Google Scholar 

  • Burke B, Giannoudis A, Corke KP et al (2003) Hypoxia-induced gene expression in human macrophages: implications for ischemic tissues and hypoxia-regulated gene therapy. Am J Pathol 163:1233–1243

    PubMed  CAS  Google Scholar 

  • Busk M, Horsman MR, Jakobsen S et al (2008) Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage. Eur J Nucl Med Mol Imaging 35:2294–2303

    PubMed  CAS  Google Scholar 

  • Caldwell CC, Kojima H, Lukashev D et al (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167:6140–6149

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM et al (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490

    PubMed  CAS  Google Scholar 

  • Carta L, Pastorino S, Melillo G et al (2001) Engineering of macrophages to produce IFN-gamma in response to hypoxia. J Immunol 166:5374–5380

    PubMed  CAS  Google Scholar 

  • Cavanagh LL, Von Andrian UH (2002) Travellers in many guises:The origins and destinations of dendritic cells. Immun Cell Biol 80:448–462

    Google Scholar 

  • Chadwick W, Boyle JP, Zhou Y et al (2011) Multiple oxygen tension environments reveal diverse patterns of transcriptional regulation in primary astrocytes. PLoS One 6:e21638

    PubMed  CAS  Google Scholar 

  • Chan DA, Giaccia AJ (2007) Hypoxia, gene expression, and metastasis. Cancer Metastasis Rev 26:333–339

    PubMed  CAS  Google Scholar 

  • Chi JT, Wang Z, Nuyten DS et al (2006) Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 3:e47

    PubMed  Google Scholar 

  • Coffelt SB, Chen YY, Muthana M et al (2011) Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. J Immunol 186:4183–4190

    PubMed  CAS  Google Scholar 

  • Colonna M, Nakajima H, Cella M (2000) A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells. Semin Immunol 12:121–127

    PubMed  CAS  Google Scholar 

  • Cornero A, Acquaviva M, Fardin P et al (2012) Design of a multi-signature ensemble classifier predicting neuroblastoma patients’ outcome. BMC Bioinformatics 13(Suppl 4):S13

    PubMed  Google Scholar 

  • Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1a is essential for myeloid cell-mediated inflammation. Cell 112:645–657

    PubMed  CAS  Google Scholar 

  • Crowther M, Brown NJ, Bishop ET et al (2001) Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. J Leukoc Biol 70:478–490

    PubMed  CAS  Google Scholar 

  • Cummins EP, Taylor CT (2005) Hypoxia-responsive transcription factors. Pflugers Arch 450:363–371

    PubMed  CAS  Google Scholar 

  • de Visser KE, Coussens LM (2005) The interplay between innate and adaptive immunity regulates cancer development. Cancer Immunol Immunother 54:1143–1152

    PubMed  CAS  Google Scholar 

  • Eckert AW, Kappler M, Schubert J et al (2012) Correlation of expression of hypoxia-related proteins with prognosis in oral squamous cell carcinoma patients. Oral Maxillofac Surg 16:189–196

    PubMed  CAS  Google Scholar 

  • Edsjo A, Holmquist L, Pahlman S (2007) Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation. Semin Cancer Biol 17:248–256

    PubMed  Google Scholar 

  • Elia AR, Cappello P, Puppo M et al (2008) Human dendritic cells differentiated in hypoxia down-modulate antigen uptake and change their chemokine expression profile. J Leukoc Biol 84:1472–1482

    PubMed  CAS  Google Scholar 

  • Evans SM, Hahn S, Pook DR et al (2000) Detection of hypoxia in human squamous cell carcinoma by EF5 binding. Cancer Res 60:2018–2024

    PubMed  CAS  Google Scholar 

  • Fan C, Oh DS, Wessels L et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569

    PubMed  CAS  Google Scholar 

  • Fan C, Prat A, Parker JS et al (2011) Building prognostic models for breast cancer patients using clinical variables and hundreds of gene expression signatures. BMC Med Genomics 4:3

    PubMed  Google Scholar 

  • Fang HY, Hughes R, Murdoch C et al (2009a) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–859

    CAS  Google Scholar 

  • Fang HY, Hughes R, Murdoch C et al (2009b) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood 114:844–859

    CAS  Google Scholar 

  • Fardin P, Barla A, Mosci S et al (2009) The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines. BMC Genomics 10:474

    PubMed  Google Scholar 

  • Fardin P, Barla A, Mosci S et al (2010a) A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients. Mol Cancer 9:185

    Google Scholar 

  • Fardin P, Cornero A, Barla A et al (2010b) Identification of multiple hypoxia signatures in neuroblastoma cell lines by l(1)-l(2) regularization and data reduction. J Biomed Biotechnol 2010:878709

    Google Scholar 

  • Fink T, Ebbesen P, Koppelhus U et al (2003) Natural killer cell-mediated basal and interferon-enhanced cytotoxicity against liver cancer cells is significantly impaired under in vivo oxygen conditions. Scand J Immunol 58:607–612

    PubMed  CAS  Google Scholar 

  • Gaber T, Haupl T, Sandig G et al (2009) Adaptation of human CD4+ T cells to pathophysiological hypoxia: a transcriptome analysis. J Rheumatol 36:2655–2669

    PubMed  CAS  Google Scholar 

  • Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952

    PubMed  CAS  Google Scholar 

  • Ghadjar P, Rubie C, Aebersold DM et al (2009) The chemokine CCL20 and its receptor CCR6 in human malignancy with focus on colorectal cancer. Int J Cancer 125:741–745

    PubMed  CAS  Google Scholar 

  • Gray LH, Conger AD, Ebert M et al (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    PubMed  CAS  Google Scholar 

  • Greco O, Scott S (2007) Tumor hypoxia and targeted gene therapy. Int Rev Cytol 257:181–212

    PubMed  CAS  Google Scholar 

  • Grimshaw MJ, Balkwill FR (2001) Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation—a potential mechanism. Eur J Immunol 31:480–489

    PubMed  CAS  Google Scholar 

  • Gross MW, Karbach U, Groebe K et al (1995) Calibration of misonidazole labeling by simultaneous measurement of oxygen tension and labeling density in multicellular spheroids. Int J Cancer 61:567–573

    PubMed  CAS  Google Scholar 

  • Haibe-Kains B, Desmedt C, Piette F et al (2008) Comparison of prognostic gene expression signatures for breast cancer. BMC Genomics 9:394

    PubMed  Google Scholar 

  • Halle C, Andersen E, Lando M et al (2012) Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI. Cancer Res 72:5285–5295

    PubMed  CAS  Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    PubMed  CAS  Google Scholar 

  • Ho CC, Liao WY, Wang CY et al (2008) TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med 177:763–770

    PubMed  CAS  Google Scholar 

  • Hoeben BA, Kaanders JH, Franssen GM et al (2010) PET of hypoxia with 89Zr-labeled cG250-F(ab’)2 in head and neck tumors. J Nucl Med 51:1076–1083

    PubMed  CAS  Google Scholar 

  • Holland JP, Lewis JS, Dehdashti F (2009) Assessing tumor hypoxia by positron emission tomography with Cu-ATSM. Q J Nucl Med Mol Imaging 53:193–200

    PubMed  CAS  Google Scholar 

  • Hwang J, Kim CW, Son KN et al (2004) Angiogenic activity of human CC chemokine CCL15 in vitro and in vivo. FEBS Lett 570:47–51

    PubMed  CAS  Google Scholar 

  • Imhof BA, Aurrand-Lions M (2004) Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4:432–444

    PubMed  CAS  Google Scholar 

  • Imtiyaz HZ, Simon MC (2010) Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 345:105–120

    PubMed  CAS  Google Scholar 

  • Jogi A, Vallon-Christersson J, Holmquist L et al (2004) Human neuroblastoma cells exposed to hypoxia: induction of genes associated with growth, survival, and aggressive behavior. Exp Cell Res 295:469–487

    PubMed  CAS  Google Scholar 

  • Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993

    PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    PubMed  CAS  Google Scholar 

  • Knowles HJ, Harris AL (2007) Macrophages and the hypoxic tumour microenvironment. Front Biosci 12:4298–4314

    PubMed  CAS  Google Scholar 

  • Kong T, Eltzschig HK, Karhausen J et al (2004) Leukocyte adhesion during hypoxia is mediated by HIF-1-dependent induction of beta2 integrin gene expression. Proc Natl Acad Sci U S A 101:10440–10445

    PubMed  CAS  Google Scholar 

  • Kulbe H, Levinson NR, Balkwill F et al (2004) The chemokine network in cancer–much more than directing cell movement. Int J Dev Biol 48:489–496

    PubMed  CAS  Google Scholar 

  • Lamagna C Aurrand-Lions M, Imhof BA (2006) Dual role of macrophages in tumor growth and angiogenesis. J Leukoc Biol 80:705–713

    PubMed  CAS  Google Scholar 

  • Lanzavecchia A, Sallusto F (2001) Regulation of T cell immunity by dendritic cells. Cell 106:263–266

    PubMed  CAS  Google Scholar 

  • Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    PubMed  CAS  Google Scholar 

  • Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612

    PubMed  CAS  Google Scholar 

  • Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    PubMed  CAS  Google Scholar 

  • Li Q, Withoff S, Verma IM (2005) Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 26:318–325

    PubMed  Google Scholar 

  • Liao R, Sun TW, Yi Y et al (2012) Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma. Cancer Sci 103:984–992

    PubMed  CAS  Google Scholar 

  • Lin A, Schildknecht A, Nguyen LT et al (2010) Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth. Immunol Lett 127:77–84

    PubMed  CAS  Google Scholar 

  • Lin KW, Jacek T, Jacket R (2006) Dendritic cells heterogeneity and its role in cancer immunity. Cancer Res Ther 2:35–40

    CAS  Google Scholar 

  • Lin Q, Yun Z (2010) Impact of the hypoxic tumor microenvironment on the regulation of cancer stem cell characteristics. Cancer Biol Ther 9:949–956

    PubMed  CAS  Google Scholar 

  • Louis CA, Reichner JS, Henry WL, Jr. et al (1998) Distinct arginase isoforms expressed in primary and transformed macrophages: regulation by oxygen tension. Am J Physiol 274:R775–R782

    PubMed  CAS  Google Scholar 

  • Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    PubMed  CAS  Google Scholar 

  • Lukashev D, Klebanov B, Kojima H et al (2006) Cutting edge: hypoxia-inducible factor 1 and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. J Immunol 177:4962–4965

    PubMed  CAS  Google Scholar 

  • Malenstein H, Gevaert O, Libbrecht L et al (2010) A seven-gene set associated with chronic hypoxia of prognostic importance in hepatocellular carcinoma. Clin Cancer Res 16:4278–4288

    PubMed  Google Scholar 

  • Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    PubMed  CAS  Google Scholar 

  • Mantovani A, Allavena P, Sozzani S et al (2004) Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol 14:155–160

    PubMed  CAS  Google Scholar 

  • Mees G, Dierckx R, Vangestel C et al (2009) Molecular imaging of hypoxia with radiolabelled agents. Eur J Nucl Med Mol Imaging 36:1674–1686

    PubMed  CAS  Google Scholar 

  • Moon EJ, Brizel DM, Chi JT et al (2007) The potential role of intrinsic hypoxia markers as prognostic variables in cancer. Antioxid Redox Signal 9:1237–1294

    PubMed  CAS  Google Scholar 

  • Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255–259

    PubMed  CAS  Google Scholar 

  • Moser M, Murphy KM (2000) Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1:199–205

    PubMed  CAS  Google Scholar 

  • Murat A, Migliavacca E, Hussain SF et al (2009) Modulation of angiogenic and inflammatory response in glioblastoma by hypoxia. PLoS One 4:e5947

    PubMed  Google Scholar 

  • Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    PubMed  CAS  Google Scholar 

  • Murdoch C, Tazzyman S, Webster S et al (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178:7405–7411

    PubMed  CAS  Google Scholar 

  • Muselli M, Ferrari E (2011) Coupling Logical Analysis of Data and Shadow Clustering for Partially Defined Positive Boolean Function Reconstruction. IEEE Transactions on Knowledge Data Engineering 23:37–50

    Google Scholar 

  • Muthana M, Giannoudis A, Scott SD et al (2011) Use of macrophages to target therapeutic adenovirus to human prostate tumors. Cancer Res 71:1805–1815

    PubMed  CAS  Google Scholar 

  • Neumann AK, Yang J, Biju MP et al (2005) Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci U S A 102:17071–17076

    PubMed  CAS  Google Scholar 

  • Nistala K, Moncrieffe H, Newton KR et al (2008) Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum 58:875–887

    PubMed  Google Scholar 

  • Nizet V, Johnson RS (2009) Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    PubMed  CAS  Google Scholar 

  • Nuyten DS, Hastie T, Chi JT et al (2008) Combining biological gene expression signatures in predicting outcome in breast cancer: An alternative to supervised classification. Eur J Cancer 44:2319–2329

    PubMed  CAS  Google Scholar 

  • Palazon A, Aragones J, Morales-Kastresana A et al (2012) Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res 18:1207–1213

    PubMed  CAS  Google Scholar 

  • Palucka KA, Taquet N, SanchezChapuis F et al (1998) Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160:4587–4595

    PubMed  CAS  Google Scholar 

  • Perez-Perri JI, Acevedo JM, Wappner P (2011) Epigenetics: new questions on the response to hypoxia. Int J Mol Sci 12:4705–4721

    PubMed  CAS  Google Scholar 

  • Peyssonnaux C, Datta V, Cramer T et al (2005) HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 115:1806–1815

    PubMed  CAS  Google Scholar 

  • Pierobon D, Bosco MC, Blengio F et al (2013) Chronic hypoxia reprograms human immature dendritic cells by inducing a proinflammatory phenotype and TREM-1 expression. Eur J Immunol 43:949–966

    PubMed  CAS  Google Scholar 

  • Pietra G, Manzini C, Rivara S et al (2012) Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res 72:1407–1415

    PubMed  CAS  Google Scholar 

  • Platonova S, Cherfils-Vicini J, Damotte D et al (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71:5412–5422

    PubMed  CAS  Google Scholar 

  • Pocock R (2011) Invited review: decoding the microRNA response to hypoxia. Pflugers Arch 461:307–315

    PubMed  CAS  Google Scholar 

  • Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    PubMed  CAS  Google Scholar 

  • Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    PubMed  CAS  Google Scholar 

  • Raber P, Ochoa AC, Rodriguez PC (2012) Metabolism of L-Arginine by Myeloid-Derived Suppressor Cells in Cancer: Mechanisms of T cell suppression and Therapeutic Perspectives. Immunol Invest 41:614–634

    PubMed  CAS  Google Scholar 

  • Rahat MA, Marom B, Bitterman H et al (2006) Hypoxia reduces the output of matrix metalloproteinase-9 (MMP-9) in monocytes by inhibiting its secretion and elevating membranal association. J Leukoc Biol 79:706–718

    PubMed  CAS  Google Scholar 

  • Raleigh JA, Chou SC, Arteel GE et al (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580–589

    PubMed  CAS  Google Scholar 

  • Rama I, Brune B, Torras J et al (2008) Hypoxia stimulus: An adaptive immune response during dendritic cell maturation. Kidney Int 73:816–825

    PubMed  CAS  Google Scholar 

  • Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15:678–685

    PubMed  CAS  Google Scholar 

  • Ricciardi A, Elia AR, Cappello P et al (2008) Transcriptome of hypoxic immature dendritic cells: modulation of chemokine/receptor expression. Mol Cancer Res 6:175–185

    PubMed  CAS  Google Scholar 

  • Rius J, Guma M, Schachtrup C et al (2008) NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453:807–811

    PubMed  CAS  Google Scholar 

  • Rodrigues LR, Teixeira JA, Schmitt FL et al (2007) The role of osteopontin in tumor progression and metastasis in breast cancer. Cancer Epidemiol Biomarkers Prev 16:1087–1097

    PubMed  CAS  Google Scholar 

  • Roiniotis J, Dinh H, Masendycz P et al (2009) Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182:7974–7981

    PubMed  CAS  Google Scholar 

  • Rossi M, Young JW (2005) Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175:1373–1381

    PubMed  CAS  Google Scholar 

  • Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517

    PubMed  CAS  Google Scholar 

  • Sceneay J, Chow MT, Chen A et al (2012) Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72:3906–3911

    PubMed  CAS  Google Scholar 

  • Schioppa T, Uranchimeg B, Saccani A et al (2003) Regulation of the Chemokine Receptor CXCR4 by Hypoxia. J Exp Med 198:1391–1402

    PubMed  CAS  Google Scholar 

  • Schmieder A, Michel J, Schonhaar K et al (2012) Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol 22:289–297

    PubMed  CAS  Google Scholar 

  • Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570

    PubMed  CAS  Google Scholar 

  • Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426

    PubMed  CAS  Google Scholar 

  • Seigneuric R, Starmans MH, Fung G et al (2007) Impact of supervised gene signatures of early hypoxia on patient survival. Radiother Oncol 83:374–382

    PubMed  CAS  Google Scholar 

  • Semenza GL (2009) Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 19:12–16

    PubMed  CAS  Google Scholar 

  • Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547

    PubMed  CAS  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    PubMed  CAS  Google Scholar 

  • Sharif O, Knapp S (2008) From expression to signaling: roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology 213:701–713

    PubMed  CAS  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    PubMed  CAS  Google Scholar 

  • Sica A, Saccani A, Bottazzi B et al (2000) Defective expression of the Monocyte Chemotactic Protein-1 Receptor CCR2 in macrophages associated with human ovarian carcinoma. J Immunol 164:733–738

    PubMed  CAS  Google Scholar 

  • Sica A, Melillo G, Varesio L (2011) Hypoxia: a double-edged sword of immunity. J Mol Med 89:657–665

    PubMed  CAS  Google Scholar 

  • Sitkovsky M, Lukashev D (2008) Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5:712–721

    Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    PubMed  CAS  Google Scholar 

  • Strieter RM, Burdick MD, Mestas J et al (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42:768–778

    PubMed  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. PNAS 102:15545–15550

    PubMed  CAS  Google Scholar 

  • Sun J, Zhang Y, Yang M et al (2010) Hypoxia induces T-cell apoptosis by inhibiting chemokine C receptor 7 expression: the role of adenosine receptor A(2). Cell Mol Immunol 7:77–82

    PubMed  CAS  Google Scholar 

  • Synnott JM, Guida A, Mulhern-Haughey S et al (2010) Regulation of the hypoxic response in Candida albicans. Eukaryot Cell 9:1734–1746

    PubMed  CAS  Google Scholar 

  • Tan AC, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification. Appl Bioinformatics 2:S75–S83

    PubMed  CAS  Google Scholar 

  • Thiel M, Caldwell CC, Kreth S et al (2007) Targeted deletion of HIF-1alpha gene in T cells prevents their inhibition in hypoxic inflamed tissues and improves septic mice survival. PLoS One 2:e853

    PubMed  Google Scholar 

  • Toustrup K, Sorensen BS, Nordsmark M et al (2011) Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res 71:5923–5931

    PubMed  CAS  Google Scholar 

  • Toustrup K, Sorensen BS, Alsner J et al (2012a) Hypoxia gene expression signatures as prognostic and predictive markers in head and neck radiotherapy. Semin Radiat Oncol 22:119–127

    Google Scholar 

  • Toustrup K, Sorensen BS, Lassen P et al (2012b) Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol 102:122–129

    CAS  Google Scholar 

  • Turner L, Scotton C, Negus R et al (1999) Hypoxia inhibits macrophage migration. Eur J Immunol 29:2280–2287

    PubMed  CAS  Google Scholar 

  • Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kelleher DK (2013) Blood flow and oxygenation status of prostate cancers. Adv Exp Med Biol 765:299–305

    PubMed  CAS  Google Scholar 

  • Vaupel P, Thews G (1974) PO2 distribution in tumor tissue of DS-carcinosarcoma. Oncology 30:475–484

    PubMed  CAS  Google Scholar 

  • Vicari AP, Caux C, Trinchieri G (2002) Tumour escape from immune surveillance through dendritic cell inactivation. Semin Cancer Biol 12:33–42

    PubMed  CAS  Google Scholar 

  • Vulcano M, Struyf S, Scapini P et al (2003) Unique regulation of CCL18 production by maturing dendritic cells. J Immunol 170:3843–3849

    PubMed  CAS  Google Scholar 

  • Walmsley SR, Print C, Farahi N et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201:105–115

    PubMed  CAS  Google Scholar 

  • Watson JA, Watson CJ, McCann A et al (2010) Epigenetics, the epicenter of the hypoxic response. Epigenetics 5:293–296

    PubMed  CAS  Google Scholar 

  • Wedderburn LR, Robinson N, Patel A et al (2000) Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis. Arthritis Rheum 43:765–774

    PubMed  CAS  Google Scholar 

  • Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005:re12

    PubMed  Google Scholar 

  • White JR, Harris RA, Lee SR et al (2004) Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83:1–8

    PubMed  CAS  Google Scholar 

  • Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410

    PubMed  CAS  Google Scholar 

  • Winter SC, Buffa FM, Silva P et al (2007) Relation of a hypoxia metagene derived from head and neck cancer to prognosis of multiple cancers. Cancer Res 67:3441–3449

    PubMed  CAS  Google Scholar 

  • Wu J, Li J, Salcedo R et al (2012) The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 72:3977–3986

    PubMed  CAS  Google Scholar 

  • Xu L, Tan AC, Winslow RL et al (2008) Merging microarray data from separate breast cancer studies provides a robust prognostic test. BMC Bioinformatics 9:125

    PubMed  Google Scholar 

  • Xu M, Mizoguchi I, Morishima N et al (2010) Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clin Dev Immunol 2010:832454

    PubMed  Google Scholar 

  • Yang M, Ma C, Liu S et al (2009) Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 128:e237–e249

    PubMed  Google Scholar 

  • Yun S, Lee SH, Yoon SR et al (2011) Oxygen tension regulates NK cells differentiation from hematopoietic stem cells in vitro. Immunol Lett 137:70–77

    PubMed  CAS  Google Scholar 

  • Zampetaki A, Mitsialis SA, Pfeilschifter J et al (2004) Hypoxia induces macrophage inflammatory protein-2 (MIP-2) gene expression in murine macrophages via NF-kappaB: the prominent role of p42/p44 and PI3 kinase pathways. FASEB J 18:1090–1092

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carla Bosco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bosco, M., Varesio, L. (2014). Hypoxia and Gene Expression. In: Melillo, G. (eds) Hypoxia and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9167-5_5

Download citation

Publish with us

Policies and ethics