Skip to main content

Nonconvex Inequality Models for Contact Problems of Nonsmooth Mechanics

  • Chapter
Book cover Computer Methods in Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 1))

Abstract

This review paper deals with selected nonsmooth and nonconvex inequality problems for dynamic frictional contact between a viscoelastic body and a foundation. The process is modeled by general nonmonotone possibly multivalued multidimensional Clarke subdifferential contact boundary conditions. The problems of frictional contact with both short and long memory, thermoviscoelastic frictional contact, bilateral frictional contact and bilateral contact for piezoelectric materials with adhesion are considered. The formulations and results on existence, and uniqueness of solutions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartosz, K.: Hemivariational inequality approach to the dynamic viscoelastic sliding contact problem with wear. Nonlinear Anal. 65, 546–566 (2006)

    Article  Google Scholar 

  2. Bartosz, K.: Hemivariational inequalities modeling dynamic contact problems with adhesion. Nonlinear Anal. 71, 1747–1762 (2009)

    Article  Google Scholar 

  3. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, Interscience, New York (1983)

    Google Scholar 

  4. Denkowski, Z., Migórski, S.: Sensitivity of optimal solutions to control problems for systems described by hemivariational inequalities. Control Cybernet. 33, 211–236 (2004)

    Google Scholar 

  5. Denkowski, Z., Migórski, S.: A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. Nonlinear Anal. 60, 1415–1441 (2005)

    Article  Google Scholar 

  6. Denkowski, Z., Migórski, S.: On sensitivity of optimal solutions to control problems for hyperbolic hemivariational inequalities. Lect. Notes Pure Appl. Math. 240, 145–156 (2005)

    Google Scholar 

  7. Denkowski, Z., Migórski, S., Ochal, A.: Existence and uniqueness to a dynamic bilateral frictional contact problem in viscoelasticity. Acta Appl. Math. 94, 251–276 (2006)

    Article  Google Scholar 

  8. Denkowski, Z., Migórski, S., Ochal, A.: Optimal control for a class of mechanical thermoviscoelastic frictional contact problems. Control Cybernet. 36, 611–632 (2007)

    Google Scholar 

  9. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic/Plenum Publishers, Boston (2003)

    Google Scholar 

  10. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer Academic/Plenum Publishers, Boston (2003)

    Google Scholar 

  11. Duvaut, G., Lions, J.-L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)

    Google Scholar 

  12. Frémond, M.: Adhérence des solides. J. Mécanique Théorique et Appliquée 6, 383–407 (1987)

    Google Scholar 

  13. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society, International Press, Providence (2002)

    Google Scholar 

  14. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  15. Kulig, A.: Evolution Inclusions and Hemivariational Inequalities for Unilateral Contact in Viscoelasticity. PhD Thesis, Jagiellonian University, Krakow (2009)

    Google Scholar 

  16. Li, Y., Liu, Z.: Dynamic contact problem for viscoelastic piezoelectric materials with slip dependent friction. Nonlinear Analysis, Theory, Methods and Applications 71, 1414–1424 (2009)

    Article  Google Scholar 

  17. Liu, Z., Migórski, S.: Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete Contin. Dyn. Syst. Ser. B 9, 129–143 (2008)

    Google Scholar 

  18. Liu, Z., Migórski, S., Ochal, A.: Homogenization of boundary hemivariational inequalities in linear elasticity. J. Math. Anal. Appl. 340, 1347–1361 (2008)

    Article  Google Scholar 

  19. Migórski, S.: Homogenization technique in inverse problems for boundary hemivariational inequalities. Inverse Problems in Eng. 11, 229–242 (2003)

    Article  Google Scholar 

  20. Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84, 669–699 (2005)

    Article  Google Scholar 

  21. Migórski, S.: Boundary hemivariational inequalities of hyperbolic type and applications. J. Global Optim. 31, 505–533 (2005)

    Article  Google Scholar 

  22. Migórski, S.: Evolution hemivariational inequality for a class of dynamic viscoelastic nonmonotone frictional contact problems. Comput. Math. Appl. 52, 677–698 (2006)

    Article  Google Scholar 

  23. Migórski, S.: Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete Contin. Dyn. Syst. 6, 1339–1356 (2006)

    Google Scholar 

  24. Migórski, S., Ochal, A.: Hemivariational inequality for viscoelastic contact problem with slip dependent friction. Nonlinear Anal. 61, 135–161 (2005)

    Article  Google Scholar 

  25. Migórski, S., Ochal, A.: Hemivariational inequalities for stationary Navier-Stokes equations. J. Math. Anal. Appl. 306, 197–217 (2005)

    Article  Google Scholar 

  26. Migórski, S., Ochal, A.: A unified approach to dynamic contact problems in viscoelasticity. J. Elasticity 83, 247–275 (2006)

    Article  Google Scholar 

  27. Migórski, S., Ochal, A.: Existence of solutions for second order evolution inclusions with application to mechanical contact problems. Optimization 55, 101–120 (2006)

    Article  Google Scholar 

  28. Migórski, S., Ochal, A.: Vanishing viscosity for hemivariational inequality modeling dynamic problems in elasticity. Nonlinear Anal. 66, 1840–1852 (2007)

    Article  Google Scholar 

  29. Migórski, S., Ochal, A.: Dynamic bilateral contact problem for viscoelastic piezoelectric materials with adhesion. Nonlinear Anal. 69, 495–509 (2008)

    Article  Google Scholar 

  30. Migórski, S., Ochal, A.: Quasistatic hemivariational inequality via vanishing acceleration approach. SIAM J. Math. Anal. 41, 1415–1435 (2009)

    Article  Google Scholar 

  31. Migórski, S., Ochal, A.: An inverse coefficient problem for a parabolic hemivariational inequality. Appl. Anal. (in press, 2009)

    Google Scholar 

  32. Migórski, S., Ochal, A., Sofonea, M.: Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math. Models Methods Appl. Sci. 18, 271–290 (2008)

    Article  Google Scholar 

  33. Migórski, S., Ochal, A., Sofonea, M.: Solvability of dynamic antiplane frictional contact problems for viscoelastic cylinders. Nonlinear Anal. 70, 3738–3748 (2009)

    Article  Google Scholar 

  34. Migórski, S., Ochal, A., Sofonea, M.: Weak solvability of a piezoelectric contact problem. Eur. J. Appl. Math. 20, 145–167 (2009)

    Article  Google Scholar 

  35. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, Inc., New York (1995)

    Google Scholar 

  36. Ochal, A.: Existence results for evolution hemivariational inequalities of second order. Nonlinear Anal. 60, 1369–1391 (2005)

    Article  Google Scholar 

  37. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser, Basel (1985)

    Google Scholar 

  38. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)

    Google Scholar 

  39. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Springer, Berlin (2004)

    Google Scholar 

  40. Sofonea, M., Han, W., Shillor, M.: Analysis and Approximation of Contact Problems with Adhesion or Damage. Chapman-Hall/CRC Press, New York (2006)

    Google Scholar 

  41. Sofonea, M., Matei, A.: Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems. Springer, New York (2009)

    Google Scholar 

  42. Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact, friction and wear. Internat. J. Solids Structures 33, 1817–1836 (1996)

    Article  Google Scholar 

  43. Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Migórski, S., Ochal, A. (2010). Nonconvex Inequality Models for Contact Problems of Nonsmooth Mechanics. In: Kuczma, M., Wilmanski, K. (eds) Computer Methods in Mechanics. Advanced Structured Materials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05241-5_3

Download citation

Publish with us

Policies and ethics