Skip to main content
Log in

Existence and Uniqueness to a Dynamic Bilateral Frictional Contact Problem in Viscoelasticity

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper we examine an evolution problem which describes the dynamic bilateral contact of a viscoelastic body and a foundation. The contact is modeled by a friction multivalued subdifferential boundary condition which incorporates the Coulomb law of friction, the SJK model and the orthotropic friction law. The main result concerns the existence and uniqueness of weak solutions to the hyperbolic variational inequality when the friction coefficient is sufficiently small. The proof is based on a surjectivity result for multivalued operators and a fixed point argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amassad, A., Fabre, C.: On the analysis of viscoplastic contact problem with time dependent Tresca’s friction law. Electron. J. Math. Phys. Sci. 1(1), 47–71 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Amassad, A., Fabre, C.: Analysis of viscoelastic unilateral contact problem involving Coulomb friction law. J. Optim. Theory Appl. 116(3), 465–483 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersson, L.-E.: Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42, 169–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aubin, J.P., Cellina, A.: Differential Inclusions Set-valued Maps and Viability Theory. Springer, Berlin Heidelberg New York (1984)

    MATH  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  6. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer, Boston, MA (2003)

    Google Scholar 

  7. Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applications. Kluwer, Boston, MA (2003)

    Google Scholar 

  8. Duvaut, G.: Loi de frottement non locale. J. Méc. Thé. Appl. Special issue, pp. 73–78 (1982)

  9. Duvaut, G., Lions, J.-L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  10. Eck, C., Jarušek, J.: Existence of solutions for the dynamic frictional contact problem of isotropic viscoelastic bodies. Nonlinear Anal. 53, 157–181 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Han, W., Sofonea, M.: Time-dependent variational inequalities for viscoelastic contact problems. J. Comput. Appl. Math. 136, 369–387 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society, Providence, RI (2002)

    MATH  Google Scholar 

  13. Hild, P.: An example of nonuniqueness for the continuous static unilateral contact model with Coulomb friction. C. R. Acad. Sci. Paris Sér. I Math. 337, 685–688 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Jarušek, J., Eck, C.: Dynamic contact problems with small Coulomb friction for viscoelastic bodies. Existence of solutions. Math. Methods Appl. Sci. 9, 11–34 (1999)

    Article  Google Scholar 

  15. Kuttler, K.L., Shillor, M.: Dynamic bilateral contact with discontinuous friction coefficient. Nonlinear Anal. 45, 309–327 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuttler, K.L., Shillor, M.: Dynamic contact with Signorini’s condition and slip rate dependent friction. Electron. J. Differential Equations 2004(83), 1–21 (2004)

    MathSciNet  Google Scholar 

  17. Lions, J.L.: Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  18. Migórski, S.: Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84, 669–699 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Migórski, S., Ochal, A.: A unified approach to dynamic contact problems in viscoelasticity. J. Elasticity 83, 247–275 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    Google Scholar 

  21. Rochdi, M., Shillor, M.: Existence and uniqueness for a quasistatic frictional bilateral contact problem in thermoviscoelasticity. Quart. Appl. Math. LVIII(3), 543–560 (2000)

    MathSciNet  Google Scholar 

  22. Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Springer, Berlin Heidelberg New York (2004)

    MATH  Google Scholar 

  23. Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact, friction and wear. Internat J. Solids Structures 33, 1817–1836 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zeidler, E.: Nonlinear Functional Analysis and Applications II A/B. Springer, Berlin Heidelberg New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Migórski.

Additional information

Research supported in part by the State Committee for Scientific Research of the Republic of Poland (KBN) under Grants no. 2 P03A 003 25 and 4 T07A 027 26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denkowski, Z., Migórski, S. & Ochal, A. Existence and Uniqueness to a Dynamic Bilateral Frictional Contact Problem in Viscoelasticity. Acta Appl Math 94, 251–276 (2006). https://doi.org/10.1007/s10440-006-9079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-006-9079-5

Key words

Mathematics Subject Classifications (2000)

Navigation