Skip to main content
Log in

A Unified Approach to Dynamic Contact Problems in Viscoelasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper we consider mathematical models describing dynamic viscoelastic contact problems with the Kelvin–Voigt constitutive law and subdifferential boundary conditions. We treat evolution hemivariational inequalities which are weak formulations of contact problems. We establish the existence of solutions to hemivariational inequalities with different types of non-monotone multivalued boundary relations. These results are consequences of an existence theorem for second order evolution inclusions. In a particular case we deliver sufficient conditions under which the solution to a hemivariational inequality is unique. Finally, applications to several unilateral and bilateral problems in contact mechanics are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Amassad and C. Fabre, On the analysis of viscoplastic contact problem with time dependent Tresca's friction law. Electron. J. Math. Phys. Sci. 1(1) (2002) 47–71.

    MathSciNet  MATH  Google Scholar 

  2. A. Amassad and M. Sofonea, Analysis of a quasistatic viscoplastic problem involving Tresca friction law. Discrete Contin. Dyn. Syst. 4 (1998) 55–72.

    MathSciNet  MATH  Google Scholar 

  3. A. Amassad and M. Sofonea, Analysis of some nonlinear evolution systems arising in rate-type viscoplasticity, In: W. Chen and S. Hu (eds.), Dynamical System and Differential Equations, an added volume to Discrete and Cont. Dyn. Syst. (1998) 58–71.

  4. L.-E. Anderson, A global existence result for a quasistatic contact problem with friction. Adv. Math. Sci. Appl. 5 (1995) 249–286.

    MathSciNet  Google Scholar 

  5. B. Awbi, E.H. Essoufi and M. Sofonea, A viscoelastic contact problem with normal damped response and friction. Ann. Pol. Math. 75 (2000) 233–246.

    MathSciNet  MATH  Google Scholar 

  6. K.C. Chang, Variational methods for nondifferentiable functionals and applications to partial differential equations. J. Math. Anal. Appl. 80 (1981) 102–129.

    Article  MathSciNet  MATH  Google Scholar 

  7. O. Chau, W. Han and M. Sofonea, A dynamic frictional contact problem with normal damped response. Acta Appl. Math. 71 (2002) 159–178.

    Article  MathSciNet  MATH  Google Scholar 

  8. F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York (1983).

    MATH  Google Scholar 

  9. Z. Denkowski and S. Migórski, A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. Nonlinear Anal. 60 (2005) 1415–1441.

    Article  MathSciNet  MATH  Google Scholar 

  10. Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory and Applications. Kluwer/Plenum, Boston, Dordrecht, London, New York (2003).

    Google Scholar 

  11. Y. Dumont, D. Goeleven, M. Rochdi, K.L. Kuttler and M. Shillor, A dynamic model with friction and adhesion with applications to rocks. J. Math. Anal. Appl. 247 (2000) 87–109.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer, Berlin Heidelberg New York (1976).

    MATH  Google Scholar 

  13. D. Goeleven, M. Miettinen and P.D. Panagiotopoulos, Dynamic hemivariational inequalities and their applications. J. Optim. Theory Appl. 103(3) (1999) 567–601.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities: Theory, Methods and Applications. Kluwer, Boston, Dordrecht, London (2003).

    Google Scholar 

  15. W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, American Mathematical Society, International Press (2002).

  16. J. Jarušek, Dynamic contact problems with given friction for viscoelastic bodies. Czechoslov. Math. J. 46 (1996) 475–487.

    MATH  Google Scholar 

  17. N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988).

    MATH  Google Scholar 

  18. A. Klarbring, A. Mikelic and M. Shillor, Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26 (1988) 811–832.

    Article  MathSciNet  MATH  Google Scholar 

  19. K.L. Kuttler, Dynamic friction contact problem with general normal and friction laws. Nonlinear Anal. 28 (1997) 559–575.

    Article  MathSciNet  MATH  Google Scholar 

  20. K.L. Kuttler and M. Shillor, Set-valued pseudomonotone maps and degenerate evolution inclusions. Comm. Contemporary Math. 1(1) (1999) 87–123.

    Article  MathSciNet  MATH  Google Scholar 

  21. K.L. Kuttler and M. Shillor, Dynamic bilateral contact with discontinuous friction coefficient. Nonlinear Anal. 45 (2001) 309–327.

    Article  MathSciNet  MATH  Google Scholar 

  22. K.L. Kuttler and M. Shillor, Dynamic contact with normal compliance wear and discontinuous friction coefficient. SIAM J. Math. Anal. 34(1) (2002) 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Migórski, Existence and convergence results for evolution hemivariational inequalities. Topol. Methods Nonlinear Anal. 16 (2000) 125–144.

    MathSciNet  MATH  Google Scholar 

  24. S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl. Anal. 84 (2005) 669–699.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Migórski and A. Ochal, Boundary hemivariational inequality of parabolic type. Nonlinear Anal. 57(4) (2004) 579–596.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Migórski and A. Ochal, Hemivariational inequality for viscoelastic contact problem with slip dependent friction. Nonlinear Anal. 61 (2005) 135–161.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Migórski and A. Ochal, Existence of solutions for second order evolution inclusions and their applications to mechanical contact problems, Optimization, (2006), in press.

  28. E.S. Mistakidis and P.D. Panagiotopoulos, The search for substationarity points in the unilateral contact problems with nonmonotone friction. Math. Comput. Model. 28(4–8) (1998) 341–358.

    Article  MathSciNet  MATH  Google Scholar 

  29. Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York, Basel, Hong Kong (1995).

    Google Scholar 

  30. A. Ochal, Existence results for evolution hemivariational inequalities of second order. Nonlinear Anal. 60 (2005) 1369–1391.

    Article  MathSciNet  MATH  Google Scholar 

  31. P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkhäuser, Basel (1985).

    MATH  Google Scholar 

  32. P.D. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer, Berlin Heidelberg New York (1993).

    MATH  Google Scholar 

  33. M. Rochdi, M. Shillor and M. Sofonea, A quasistatic contact problem with directional friction and damped response. Appl. Anal. 68 (1998) 409–422.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Rochdi, M. Shillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction. J. Elast. 51 (1998) 105–126.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Shillor and M. Sofonea, A quasistatic viscoelastic contact problem with friction. Int. J. Eng. Sci. 38 (2000) 1517–1533.

    Article  MathSciNet  Google Scholar 

  36. E. Zeidler, Nonlinear Functional Analysis and Applications II A/B. Springer, Berlin Heidelberg New York (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Migórski.

Additional information

*Research supported in part by the State Committee for Scientific Research of the Republic of Poland (KBN) under Grants no. 2 P03A 003 25 and 4 T07A 027 26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migórski, S., Ochal, A. A Unified Approach to Dynamic Contact Problems in Viscoelasticity. J Elasticity 83, 247–275 (2006). https://doi.org/10.1007/s10659-005-9034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-9034-0

Key words

Mathematics Subject Classifications (2000)

Navigation