Skip to main content

Caveolins in Tumor Angiogenesis

  • Chapter
  • First Online:

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Angiogenesis is essential for tumor growth and metastasis. Caveolin proteins, in particular Caveolin-1, are increasingly recognized for their ability to regulate multiple signaling pathways in various tissues and cell types. A large body of evidence based on mouse models of tumor-induced angiogenesis in vivo as well as in vitro assays of angiogenesis along with relevant endothelial cell signaling, all point to the importance for Caveolin-1 in angiogenesis. Clinical data correlating Caveolin-1 expression with tumor microvascular density and progression further support the notion that Caveolin-1 may play an important role in tumor angiogenesis. Although direct evidence is lacking, there is a limited amount of data implying that Caveolin-2, which is the major interacting partner of Caveolin-1, could potentially also be involved in modulating tumor angiogenesis. The purpose of this chapter is to summarize existing basic and clinical research studies examining the role of caveolins, in particular Caveolin-1 in tumor angiogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  PubMed  CAS  Google Scholar 

  2. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  PubMed  CAS  Google Scholar 

  3. Staton CA et al (2004) Current methods for assaying angiogenesis in vitro and in vivo. Int J Exp Pathol 85(5):233–248

    Article  PubMed  CAS  Google Scholar 

  4. Lohela M et al (2009) VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 21(2):154–165

    Article  PubMed  CAS  Google Scholar 

  5. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    PubMed  CAS  Google Scholar 

  6. Friesel RE, Maciag T (1995) Molecular mechanisms of angiogenesis: fibroblast growth factor signal transduction. FASEB J 9(10):919–925

    PubMed  CAS  Google Scholar 

  7. Cao Y, Cao R, Hedlund EM (2008) R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med 86(7):785–789

    Article  PubMed  CAS  Google Scholar 

  8. Edelberg JM et al (1998) PDGF mediates cardiac microvascular communication. J Clin Invest 102(4):837–843

    Article  PubMed  CAS  Google Scholar 

  9. Tait CR, Jones PF (2004) Angiopoietins in tumours: the angiogenic switch. J Pathol 204(1):1–10

    Article  PubMed  CAS  Google Scholar 

  10. Compagni A et al (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169

    PubMed  CAS  Google Scholar 

  11. Kano MR et al (2005) VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling. J Cell Sci 118(Pt 16):3759–3768

    Article  PubMed  CAS  Google Scholar 

  12. Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99(17):11205–11210

    Article  PubMed  CAS  Google Scholar 

  13. Thurston G et al (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6(4):460–463

    Article  PubMed  CAS  Google Scholar 

  14. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48:359–391

    Article  PubMed  CAS  Google Scholar 

  15. Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12(3):796–809

    Article  PubMed  CAS  Google Scholar 

  16. Mercier I et al (2009) Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Lab Invest 89(6):614–623

    Article  PubMed  CAS  Google Scholar 

  17. Parat MO (2009) The biology of caveolae: achievements and perspectives. Int Rev Cell Mol Biol 273:117–162

    Article  PubMed  CAS  Google Scholar 

  18. Williams TM, Lisanti MP (2004) The Caveolin genes: from cell biology to medicine. Ann Med 36(8):584–595

    Article  PubMed  CAS  Google Scholar 

  19. Woodman SE et al (2003) Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162(6):2059–2068

    Article  PubMed  CAS  Google Scholar 

  20. Chang SH et al (2009) Vascular permeability and pathological angiogenesis in caveolin-1-null mice. Am J Pathol 175(4):1768–1776

    Article  PubMed  CAS  Google Scholar 

  21. Tahir SA et al (2008) Tumor cell-secreted caveolin-1 has proangiogenic activities in prostate cancer. Cancer Res 68(3):731–739

    Article  PubMed  CAS  Google Scholar 

  22. Sonveaux P et al (2004) Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res 95(2):154–161

    Article  PubMed  CAS  Google Scholar 

  23. Griffoni C et al (2000) Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 276(2):756–761

    Article  PubMed  CAS  Google Scholar 

  24. Liu J et al (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277(12):10661–10668

    Article  PubMed  CAS  Google Scholar 

  25. Galvez BG et al (2004) Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell 15(2):678–687

    Article  PubMed  CAS  Google Scholar 

  26. Beardsley A et al (2005) Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem 280(5):3541–3547

    Article  PubMed  CAS  Google Scholar 

  27. Joo HJ et al (2004) Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 93(3):291–296

    Article  PubMed  CAS  Google Scholar 

  28. Yang G et al (2007) Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum Pathol 38(11):1688–1695

    Article  PubMed  CAS  Google Scholar 

  29. Barresi V, Cerasoli S, Tuccari G (2008) Correlative evidence that tumor cell-derived caveolin-1 mediates angiogenesis in meningiomas. Neuropathology 28(5):472–478

    Article  PubMed  Google Scholar 

  30. Zhang ZB et al (2009) Overexpression of caveolin-1 in hepatocellular carcinoma with metastasis and worse prognosis: correlation with vascular endothelial growth factor, microvessel density and unpaired artery. Pathol Oncol Res 15(3):495–502

    Article  PubMed  CAS  Google Scholar 

  31. Brouet A et al (2005) Antitumor effects of in vivo caveolin gene delivery are associated with the inhibition of the proangiogenic and vasodilatory effects of nitric oxide. FASEB J 19(6):602–604

    PubMed  CAS  Google Scholar 

  32. Lin MI et al (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67(6):2849–2856

    Article  PubMed  CAS  Google Scholar 

  33. Dewever J et al (2007) Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol 171(5):1619–1628

    Article  PubMed  CAS  Google Scholar 

  34. Liu J et al (1999) Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem 274(22):15781–15785

    Article  PubMed  CAS  Google Scholar 

  35. Fang K et al (2007) Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle 6(2):199–204

    Article  PubMed  CAS  Google Scholar 

  36. Regina A et al (2004) Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J Neurosci Res 75(2):291–299

    Article  PubMed  CAS  Google Scholar 

  37. Labrecque L et al (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14(1):334–347

    Article  PubMed  CAS  Google Scholar 

  38. Galvagni F et al (2007) Vascular endothelial growth factor receptor-3 activity is modulated by its association with caveolin-1 on endothelial membrane. Biochemistry 46(13):3998–4005

    Article  PubMed  CAS  Google Scholar 

  39. Garcia-Cardena G et al (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272(41):25437–25440

    Article  PubMed  CAS  Google Scholar 

  40. Ju H et al (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272(30):18522–18525

    Article  PubMed  CAS  Google Scholar 

  41. Bucci M et al (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6(12):1362–1367

    Article  PubMed  CAS  Google Scholar 

  42. Feron O et al (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271(37):22810–22814

    Article  PubMed  CAS  Google Scholar 

  43. Sowa G, Pypaert M, Sessa WC (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci USA 98(24):14072–14077

    Article  PubMed  CAS  Google Scholar 

  44. Shi L et al (2007) Expression of caveolin-1 in mucoepidermoid carcinoma of the salivary glands: correlation with vascular endothelial growth factor, microvessel density, and clinical outcome. Cancer 109(8):1523–1531

    Article  PubMed  CAS  Google Scholar 

  45. de Laurentiis A, Donovan L, Arcaro A (2007) Lipid rafts and caveolae in signaling by growth factor receptors. Open Biochem J 1:12–32

    PubMed  Google Scholar 

  46. Feron O, Kelly RA (2001) The caveolar paradox: suppressing, inducing, and terminating eNOS signaling. Circ Res 88(2):129–131

    PubMed  CAS  Google Scholar 

  47. Gazzerro E et al (2010) Caveolinopathies: from the biology of caveolin-3 to human diseases. Eur J Hum Genet 18(2):137–145

    Article  PubMed  CAS  Google Scholar 

  48. Razani B et al (2002) Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 22(7):2329–2344

    Article  PubMed  CAS  Google Scholar 

  49. Xie L et al (2010) Endothelial cells isolated from Caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild type counterparts. Am J Physiol Cell Physiol 298(3):C693–C701

    Article  PubMed  CAS  Google Scholar 

  50. Sowa G et al (2003) The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc Natl Acad Sci USA 100(11):6511–6516

    Article  PubMed  CAS  Google Scholar 

  51. Sowa G et al (2008) Serine 23 and 36 phosphorylation of caveolin-2 is differentially regulated by targeting to lipid raft/caveolae and in mitotic endothelial cells. Biochemistry 47(1):101–111

    Article  PubMed  CAS  Google Scholar 

  52. Gonzalez E et al (2004) Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 279(39):40659–40669

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the author’s laboratory on this topic is supported by the grant from the National Institute of Health (1R01HL081860 to GS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Sowa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sowa, G. (2012). Caveolins in Tumor Angiogenesis. In: Mercier, I., Jasmin, JF., Lisanti, M. (eds) Caveolins in Cancer Pathogenesis, Prevention and Therapy. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1001-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1001-0_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1000-3

  • Online ISBN: 978-1-4614-1001-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics