Skip to main content

The Microbiology of Perchlorate Reduction and its Bioremediative Application

  • Chapter
Perchlorate

Conclusions

The field of microbial perchlorate reduction has clearly advanced significantly in a very short period from a poorly understood metabolism to a burgeoning scientific field of discovery. As outlined above, there is now a much greater appreciation of the microbiology involved and the application of the knowledge to the successful treatment of contaminated environments. Overall, the future is promising even though research in this field is still in its infancy. Nothing is known of the evolutionary root of this metabolism. From a biogeochemical perspective, a better understanding of how perchlorate is formed in the natural environment and what geochemical conditions are required for its formation might give some insight into plotting the metabolism against a realistic evolutionary timeline. From a microbial perspective, it will be important to look for this metabolism in more extreme environments such as hypersaline or hyperthermophilic environments to obtain DPRB isolates across a broader phylogeny to establish a broad-base molecular chronometer. With the development of this field comes a better understanding of the ideal electron donors available and the individual factors which truly control the activity of the these organisms in-situ allowing for the design of more effective and robust enhanced in situ bioremediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aslander, A. 1928. Experiments on the eradication of Canada Thistle, Cirsium arvense, with chlorates and other herbicides. J Agric Res. 36:915.

    CAS  Google Scholar 

  2. Coates, J. D., U. Michaelidou, S. M. O’Connor, R. A. Bruce, and L. A. Achenbach 2000. The diverse microbiology of (per)chlorate reduction., p. 257–270. In E. D. Urbansky (ed.), Perchlorate in the Environment. Kluwer Academic/ Plenum, New York.

    Google Scholar 

  3. Germgard, U., A. Teder, and D. Tormund 1981. Chlorate formation during chlorine dioxide bleaching of softwood kraft pulp. Paperi ja Puu. 3:127–133.

    Google Scholar 

  4. Rosemarin, A., K. Lehtinen, and M. Notini 1990. Effects of treated and untreated softwood pulp mill effluents on Baltic sea algae and invertebrates in model ecosystems. Nord. Pulp and Paper Res. J. 2:83–87.

    Google Scholar 

  5. Agaev, R., V. Danilov, V. Khachaturov, B. Kasymov, and B. Tishabaev 1986. The toxicity to warm-blooded animals and fish of new defoliants based on sodium and magnesium chlorates. Uzb. Biol. Zh. 1:40–43.

    Google Scholar 

  6. Urbanski, T. 1984. Salts of nitric acid and of oxy-acids of chlorine, p. 444–461. In T. Urbanski (ed.), Chemistry and Technology of Explosives, vol. 4. Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  7. Urbanski, T. 1984. Composite propellants, p. 602–620. In T. Urbanski (ed.), Chemistry and Technology of Explosives, vol. 4. Pergamon Press, New York.

    Google Scholar 

  8. Motzer, W. E. 2001. Perchlorate: problems, detection, and solutions. Environ For. 2:301–311.

    CAS  Google Scholar 

  9. Urbansky, E. T. 1998. Perchlorate chemistry: implications for analysis and remediation. Bioremed J. 2:81–95.

    Article  CAS  Google Scholar 

  10. Roote, D. S. 2001. Technology status report perchlorate treatment technologies first edition. Technology status report DAAE30-98-C-1050. Ground-Water Remediation Technologies Analysis Center.

    Google Scholar 

  11. Urbansky, E. T. 2002. Perchlorate as an environmental contaminant. Environ Sci Pollut Res. 9:187–192.

    Article  CAS  Google Scholar 

  12. Urbansky, E. T., and S. K. Brown 2003. Perchlorate retention and mobility in soils. J. Environ Monit. 5:455–462.

    Article  CAS  Google Scholar 

  13. Xu, J., Y. Song, B. Min, L. Steinberg, and B. E. Logan 2003. Microbial degradation of perchlorate: principles and applications. Environ Eng Sci. 20:405–422.

    Article  CAS  Google Scholar 

  14. Bryan, E. H., and G. A. Rohlich 1954. Biological reduction of sodium chlorate as applied to measurement of sewage BOD. Sew Ind Waste. 26:1315–1324.

    CAS  Google Scholar 

  15. Bryan, E. H. 1966. Application of the chlorate BOD procedure to routine measurement of wastewater strength. J Wat Pol Con Fed. 38:1350–1362.

    CAS  Google Scholar 

  16. Hackenthal, E., W. Mannheim, R. Hackenthal, and R. Becher 1964. Die Reduktion Von Perchlorat Durch Bakterien. I.* Untersucungen An Intaken Zellen. Biochem Pharm. 13:195–206.

    Article  CAS  Google Scholar 

  17. Hackenthal, E. 1965. Die reduktion von perchlorat durch bacterien-II. Die identitat der nitratreduktase und des perchlorat reduzierenden enzyms aus B. cereus. Biochem. Pharm. 14:1313–1324.

    Article  CAS  Google Scholar 

  18. de Groot, G. N., and A. H. Stouthamer 1969. Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate resistant mutants. Arch Microbiol. 66:220–233.

    Google Scholar 

  19. Roldan, M. D., F. Reyes, C. Moreno-Vivian, and F. Castillo 1994. Chlorate and Nitrate reduction in the phototrophic bacteria Rhodobacter capsulatus and Rhodobacter sphaeroides. Cur Microbiol. 29:241–245.

    Article  CAS  Google Scholar 

  20. Stewart, V. 1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52:190–232.

    CAS  Google Scholar 

  21. Neidhardt, F. C., R. Curtiss, J. Ingraham, E. Lin, K. Brooks Low, B. Magasanik, W. Rfznikopp, M. Riley, M. Schaechter, and H. E. Umbarger (eds.) 1996 Escherichia coli and Salmonella-Cellular and Molecular Biology. ASM Press, Washington DC.

    Google Scholar 

  22. Oltmann, L. F., W. N. M. Reijnders, and A. H. Stouthamer 1976. Characterization of purified nitrate reductase a and chlorate reductase c from Proteus mirabilis. Archi Microbiol. 111:25–35.

    Article  CAS  Google Scholar 

  23. Coates, J. D., and L. A. Achenbach 2004. Microbial perchlorate reduction: rocket fuelled metabolism. Nat Rev Microbiol. 2:569–580.

    Article  CAS  Google Scholar 

  24. Coates, J. D., U. Michaelidou, R. A. Bruce, S. M. O’Connor, J. N. Crespi, and L. A. Achenbach 1999. The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol. 65:5234–5241.

    CAS  Google Scholar 

  25. Bruce, R. A., L. A. Achenbach, and J. D. Coates 1999. Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ Microbiol. 1:319–331.

    Article  CAS  Google Scholar 

  26. Michaelidou, U., L. A. Achenbach, and J. D. Coates 2000. Isolation and characterization of two novel (per)chlorate-reducing bacteria from swine waste lagoons., p. 271–283. In E. D. Urbansky (ed.), Perchlorate in the Environment. Kluwer Academic/ Plenum, New York.

    Google Scholar 

  27. Romanenko, V. I., V. N. Korenkov, and S. I. Kuznetsov 1976. Bacterial decomposition of ammonium perchlorate. Mikrobiologiya. 45:204–209.

    CAS  Google Scholar 

  28. Stepanyuk, V., G. Smirnova, T. Klyushnikova, N. Kanyuk, L. Panchenko, T. Nogina, and V. Prima 1992. New species of the Acinetobacter genus Acinetobacter thermotoleranticus sp. nov. Mikrobiologiya. 61:347–356.

    Google Scholar 

  29. Malmqvist, A., T. Welander, E. Moore, A. Ternstrom, G. Molin, and I.-M. Stenstrom 1994. Ideonella dechloratans gen. nov., sp. nov., a new bacterium capable of growing anarobically with chlorate as an electron acceptor. Sys. Appl. Microbiol. 17:58–64.

    Google Scholar 

  30. Rikken, G., A. Kroon, and C. van Ginkel 1996. Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl. Microbiol. Biotechnol. 45:420–426.

    Article  CAS  Google Scholar 

  31. Wallace, W., T. Ward, A. Breen, and H. Attaway 1996. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J Ind Microbiol. 16:68–72.

    Article  CAS  Google Scholar 

  32. Coates, J. D., R. Chakraborty, J. G. Lack, S. M. O’Connor, K. A. Cole, K. S. Bender, and L. A. Achenbach 2001. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature. 411:1039–1043.

    Article  CAS  Google Scholar 

  33. Zhang, H. S., M. A. Bruns, and B. E. Logan 2002. Chemolithoautotrophic perchlorate reduction by a novel hydrogen-oxidizing bacterium. Environ Microbiol. 4:570–576.

    Article  CAS  Google Scholar 

  34. Herman, D. C, and W. T. Frankenberger, Jr. 1999. Bacterial reduction of perchlorate and nitrate in water. J Environ Qual. 28:1018–1024.

    Article  CAS  Google Scholar 

  35. Okeke, B. C, T. Giblin, and W. T. Frankenberger 2002. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ Pollut. 118:357–363.

    Article  CAS  Google Scholar 

  36. Coates, J. D., K. A. Cole, R. Chakraborty, S. M. O’Connor, and L. A. Achenbach 2002. The diversity and ubiquity of bacteria utilizing humic substances as an electron donor for anaerobic respiration. Appl Environ Microbiol. 68:2445–2452.

    Article  CAS  Google Scholar 

  37. Chaudhuri, S. K., J. G. Lack, and J. D. Coates 2001. Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microbiol. 67:2844–2848.

    Article  CAS  Google Scholar 

  38. Lack, J. G., S. K. Chaudhuri, S. D. Kelly, K. M. Kemner, S. M. O’Connor, and J. D. Coates 2002. Immobilization of radionuclides and heavy metals through anaerobic biooxidation of Fe(II). Appl Environ Microbiol. 68:2704–2710.

    Article  CAS  Google Scholar 

  39. Lack, J. G., S. K. Chaudhuri, R. Chakraborty, L. A. Achenbach, and J. D. Coates 2002. Anaerobic biooxidation of Fe(II) by Dechlorosoma suillum. Microb Ecol. 43:424–431.

    Article  CAS  Google Scholar 

  40. Logan, B. 1998. A review of chlorate-and perchlorate-respiring microorganisms. Bioremed J. 2:69–79.

    Article  CAS  Google Scholar 

  41. Wolterink, A. F. W. M., A. B. Jonker, S. W. M. Kengen, and A. J. M. Stams 2002. Pseudomonas chloritidismutans sp. nov., a non-denitrifying, chlorate-reducing bacterium. Int J Syst Evol Microbiol. 52:2183–2190.

    Article  CAS  Google Scholar 

  42. Coleman, M. L., M. Ader, S. Chaudhuri, and J. D. Coates 2003. Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol. 69:4997–5000.

    Article  CAS  Google Scholar 

  43. Sturchio, N. C., P. B. Hatzinger, M. Arkins, C. Suh, and L. Heraty 2003. Chlorine isotope fractionation during microbial reduction of perchlorate. Environ Sci Technol. 37:3859–3863.

    Article  CAS  Google Scholar 

  44. Achenbach, L. A., R. A. Bruce, U. Michaelidou, and J. D. Coates 2001. Dechloromonas agitata N.N. gen., sp. nov. and Dechlorosoma suillum N.N. gen., sp. nov. two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol. 51:527–533.

    CAS  Google Scholar 

  45. Bender, K. S., C. Shang, R. Chakraborty, S. M. Belchik, J. D. Coates, and L. A. Achenbach 2005. Identification, characterization, and classification of genes encoding perchlorate reductase. J Bacteriol. 187:5090–5096

    Article  CAS  Google Scholar 

  46. Bender, K. S. 2003. The genetics of (per)chlorate reduction. PhD. Thesis Southern Illinois University.

    Google Scholar 

  47. Achenbach, L. A., and J. D. Coates 2000. Disparity between bacterial phylogeny and physiology. ASM News. 66:714–716.

    Google Scholar 

  48. Tan, Z., and B. Reinhold-Hurek 2003. Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int J Sys Evol Microbiol. 53:1139–1142.

    Article  CAS  Google Scholar 

  49. Coates, J. D., R. A. Bruce, J. A. Patrick, and L. A. Achenbach 1999. Hydrocarbon bioremediative potential of (per)chlorate-reducing bacteria. Bioremed J. 3:323–334.

    Article  CAS  Google Scholar 

  50. Logan, B. E., H. Zhang, P. Mulvaney, M. G. Milner, I. M. Head, and R. F. Unz 2001. Kinetics of perchlorate-and chlorate-respiring bacteria. Appl Environ. Microbiol. 67:2499–2506.

    Article  CAS  Google Scholar 

  51. Coates, J. D. 2005. Bacteria that respire oxyanions of chlorine. In D. Brenner, N. Krieg, J. Staley, and G. Garrity (eds), Bergey’s Manual of Sytematic Bacteriology, vol. 2. Springer-Verlag, New York, NY.

    Google Scholar 

  52. Michaelidou, U. 2005. An investigation of the environmental significance of microbial (per)chlorate reduction. MSc. Thesis Southern Illinois University.

    Google Scholar 

  53. Chaudhuri, S. K., S. M. O’Connor, R. L. Gustavson, L. A. Achenbach, and J. D. Coates 2002. Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol. 68: 4425–4430.

    Article  CAS  Google Scholar 

  54. Pollock, J. 2003. Diversity of perchlorate-reducing bacteria in relation to environmental factors. MSc. Thesis Southern Illinois University.

    Google Scholar 

  55. Logan, B. E., J. Wu, and R. F. Unz 2001. Biological perchlorate reduction in high-salinity solutions. Wat Res. 35:3034–3038.

    Article  CAS  Google Scholar 

  56. Cang, Y., D. J. Roberts, and D. A. Clifford 2004. Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Wat Res. 38:3322–3330.

    Article  CAS  Google Scholar 

  57. Bruce, R. A. 1999. The microbiology and bioremediative potential of (per)chlorate-reducing bacteria MSc. Thesis Southern Illinois University.

    Google Scholar 

  58. van Ginkel, C, G. Rikken, A. Kroon, and S. Kengen 1996. Purification and characterization of chlorite dismutase: a novel oxygen-generating enzyme. Arch. Microbiol. 166:321–326.

    Article  Google Scholar 

  59. Bender, K. S., S. M. O’Connor, R. Chakraborty, J. D. Coates, and L. A. Achenbach 2002. The chlorite dismutase gene of Dechloromonas agitata strain CKB: Sequencing, transcriptional analysis and its use as a metabolic probe. Appl Environ Microbiol. 68:4820–4826.

    Article  CAS  Google Scholar 

  60. Bender, K. S. 2003. The genetics of (per)chlorate reduction. PhD. Thesis Southern Illinois University.

    Google Scholar 

  61. Bardiya, N., and J. H. Bae 2004. Role of Citrobacter amalonaticus and Citrobacter farmeri in dissimilatory perchlorate reduction. J Bas Microbiol. 44:88–97.

    Article  CAS  Google Scholar 

  62. O’Connor, S. M., and J. D. Coates 2002. A universal immuno-probe for (perchlorate-reducing bacteria. Appl. Environ. Microbiol. 68:3108–3113.

    Article  CAS  Google Scholar 

  63. Lovley, D. R., and F. H. Chapelle 1995. Deep subsurface microbial processes. Rev Geophys. 33:365–381.

    Article  Google Scholar 

  64. Coates, J. D., and L. A. Achenbach 2001. The Biogeochemistry of Aquifer Systems, p. 719–727. In C. J. Hurst, G. R. Knudsen, M. J. Mclnerney, L. D. Stetzenbach, and M. W. Walter (eds), Manual of Environmental Microbiology, 2nd ed. ASM Press, Washington, DC.

    Google Scholar 

  65. Lovley, D. R., and S. Goodwin 1988. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta. 52:2993–3003.

    Article  CAS  Google Scholar 

  66. Champ, D. R., J. Gulens, and R. E. Jackson 1979. Oxidation-reduction sequences in ground water flow systems. Can. J. Earth Sci. 16:12–23.

    CAS  Google Scholar 

  67. Christensen, T. H., P. L. Bjerg, S. A. Banwart, R. Jakobsen, G. Heron, and H. Albrechtsen 2000. Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45:165–241.

    Article  CAS  Google Scholar 

  68. Ehrlich, H. L. 1990. Geomicrobiology, Third edition, Revised and Expanded ed. Marcel dekker, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Coates, J.D., Achenbach, L.A. (2006). The Microbiology of Perchlorate Reduction and its Bioremediative Application. In: Gu, B., Coates, J.D. (eds) Perchlorate. Springer, Boston, MA. https://doi.org/10.1007/0-387-31113-0_12

Download citation

Publish with us

Policies and ethics