Skip to main content
Log in

Spatial structure and fluctuations in the contact process and related models

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The contact process is used as a simple spatial model in many disciplines, yet because of the buildup of spatial correlations, its dynamics remain difficult to capture analytically. We introduce an empirically based, approximate method of characterizing the spatial correlations with only a single adjustable parameter. This approximation allows us to recast the contact process in terms of a stochastic birth-death process, converting a spatiotemporal problem into a simpler temporal one. We obtain considerably more accurate predictions of equilibrium population than those given by pair approximations, as well as good predictions of population variance and first passage time distributions to a given (low) threshold. A similar approach is applicable to any model with a combination of global and nearest-neighbor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. (1975). Mathematical models of species interactions in time and space. Am. Nat. 109, 319–342.

    Article  Google Scholar 

  • Barkham, J. P. and C. E. Hance (1982). Population dynamics of the wild daffodil (narcissus pseudonarcissus) III. Implications of a computer model of 1000 years of population change. J. Ecol. 70, 323–344.

    Google Scholar 

  • Bascompte, J. (1999). Aggregate statistical measures and metapopulation dynamics. J. Theor. Biol. (Submitted).

  • Dickman, R. (1986). Kinetic phase transitions in a surface-reaction model: mean-field theory. Phys. Rev. A 34, 4246–4250.

    Article  Google Scholar 

  • Durrett, R. and S. A. Levin (1994). Stochastic spatial models: A user’s guide to ecological applications. Phil. Trans. R. Soc. Lond., Ser. B 343, 329–350.

    Google Scholar 

  • Ellner, S. P., A. Sasaki, Y. Haraguchi and H. Matsuda (1998). Speed of invasion in lattice population models: Pair-edge approximation. J. Math. Biol. 36, 469–484.

    Article  MathSciNet  Google Scholar 

  • Fisher, M. E. (1998). Renormalization group theory: Its basis and formulation in statistical physics. Rev. Mod. Phys. 70, 653–681.

    Article  Google Scholar 

  • Gurney, W. S. C. and R. M. Nisbet (1978). Single-species population fluctuations in patchy environments. Am. Nat. 112, 1075–1090.

    Article  Google Scholar 

  • Hanski, I. (1983). Coexistence of competitors in patchy environment. Ecology 64, 493–500.

    Article  Google Scholar 

  • Harada, Y., H. Ezoe, Y. Iwasa, H. Matsuda and K. Satō (1995). Population persistence and spatially limited social interaction. Theor. Popul. Biol. 48, 65–91.

    Article  Google Scholar 

  • Harada, Y. and Y. Iwasa (1994). Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. (Kyoto) 36, 237–249.

    Google Scholar 

  • Kareiva, P. (1990). Population dynamics in spatially complex environments: Theory and data. Phil. Trans. R. Soc. Lond., Ser. B 330, 175–190.

    Google Scholar 

  • Katori, M. and N. Konno (1990). Correlation inequalities and lower bounds for the critical value lambda/sub c/ of contact processes. J. Phys. Soc. Japan 59, 877–887.

    Article  MathSciNet  Google Scholar 

  • Keeling, M. (1999). Spatial models of interacting populations, in Advanced Ecological Theory: Principles and Applications, J. McGlade (Ed.), Oxford: Blackwell Science, pp. 64–99.

    Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240.

    Google Scholar 

  • Matsuda, H., N. Ogita, A. Sasaki and K. Satō (1992). Statistical mechanics of population-the lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049.

    Article  Google Scholar 

  • McCauley, E., W. G. Wilson and A. M. De Roos (1993). Dynamics of age-structured and spatially structured predator-prey interactions individual-based models and population-level formulations. Am. Nat. 142, 412–442.

    Article  Google Scholar 

  • Nachman, G. (1987). Systems analysis of acarine predator-prey interactions: II. The role of spatial processes in system stability spatial processes in system stability. J. Anim. Ecol. 56, 267–282.

    Google Scholar 

  • Nisbet, R. M. and W. S. C. Gurney (1982). Modelling Fluctuating Populations, New York: John Wiley & Sons.

    Google Scholar 

  • Nisbet, R. M., W. S. C. Gurney and M. A. Pettipher (1977). An evaluation of linear models of population fluctuations. J. Theor. Biol. 68, 143–160.

    Article  MathSciNet  Google Scholar 

  • Ohtsuki, T. and T. Keyes (1986). Kinetic growth percolation: epidemic processes with immunization. Phys. Rev. A 33, 1223–1232.

    Article  Google Scholar 

  • Rand, D. A. (1999). Correlation equations and pair approximations for spatial ecologies, in Advanced Ecological Theory: Principles and Applications, J. McGlade (Ed.), Oxford: Blackwell Science, pp. 100–142.

    Google Scholar 

  • Reeve, J. D. (1988). Environmental variability, migration, and persistence in host-parasitoid systems. Am. Nat. 132, 810–836.

    Article  Google Scholar 

  • Renfrew, E. (1991). Modelling Biological Populations in Space and Time, New York: Cambridge University Press.

    Google Scholar 

  • Richards, S. A., W. G. Wilson and J. E. S. Socolar (1999). Selection for short-lived and offspring-limited individuals in a spatially-structured population which is subject to localized disturbances. Unpublished manuscript.

  • Satō, K., H. Matsuda and A. Sasaki (1994). Pathogen invasion and host extinction in lattice structured populations. J. Math. Biol. 32, 251–268.

    Article  Google Scholar 

  • Shigesada, N. and K. Kawasaki (1997). Biological Invasions: Theory and Practice, New York: Oxford University Press.

    Google Scholar 

  • Slatkin, M. (1974). Competition and regional coexistence. Biometrika 55, 128–134.

    Google Scholar 

  • Snyder, R. E. (2000). Effects of spatial correlations and fluctuations on population dynamics, PhD thesis, University of California, Santa Barbara (in preparation).

    Google Scholar 

  • van Baalen, M. and D. A. Rand (1998). The unit of selection in viscous populations and the evolution of altruism. J. Theor. Biol. 193, 631–648.

    Article  Google Scholar 

  • van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry, Amsterdam: North-Holland.

    Google Scholar 

  • Wilson, K. G. (1983). The renormalization group and critical phenomena. Rev. Mod. Phys. 55, 583–600. Nobel Prize Lecture.

    Article  Google Scholar 

  • Wilson, W. G., R. M. Nisbet, A. H. Ross, C. Robles and R. A. Desharnais (1996). Abrupt population changes along smooth environmental gradients. Bull. Math. Biol. 58, 907–922.

    Article  Google Scholar 

  • Zeigler, B. P. (1977). Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. J. Theor. Biol. 67, 687–713.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, R.E., Nisbet, R.M. Spatial structure and fluctuations in the contact process and related models. Bull. Math. Biol. 62, 959–975 (2000). https://doi.org/10.1006/bulm.2000.0191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1006/bulm.2000.0191

Keywords

Navigation