Skip to main content

Spark Plasma Sintering of Ceramic Matrix Composite of TiC: Microstructure, Densification, and Mechanical Properties: A Review

  • Conference paper
  • First Online:
Advances in Material Science and Engineering

Abstract

The application of monolithic/un-doped/single-phase ceramics has been limited due to their difficulty in sintering and low fracture toughness. Ceramic matrix composites have gained predominant attention in the past decades in comparison to monolithic/un-doped/single phase ceramics, this is as a result of the high fracture toughness, good wear resistance, and high hardness that they (ceramic matrix composite) possess. Also, the use of sintering additives in collaboration with the application of modern consolidation viz spark plasma sintering (SPS) has gained high prominence to nullify these challenges faced by ceramics. Although, previous review has highlighted the use of diverse techniques (hot press, hot isostatic, pressureless sintering, and SPS) on the consolidation of ceramics and its composites. Amidst all these techniques, SPS has stood to be an effective powder metallurgy route for achieving good microstructure and excellent mechanical properties. This review takes a research on the effects of nitrides based sintering additives on the microstructure, densification, and mechanical properties of titanium carbides ceramic matrix by SPS. The review finally concludes on the potential research importance on the types of sintering additives inclusion that should be in further research processes for improvement in material properties of titanium carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, Z., Nayebi, B., Asl, M.S., Farahbakhsh, I., Balak, Z.: Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron-and nano-sized SiC particulates. Ceram. Int. 44, 11431–11437 (2018)

    Article  Google Scholar 

  2. Ebrahimi, A., Esfahani, H., Fattah-alhosseini, A., Imantalab, O.: In-vitro electrochemical study of TiB/TiB2 composite coating on titanium in Ringer’s solution. J. Alloy. Compd. 765, 826–834 (2018)

    Article  Google Scholar 

  3. Balcı, Ö., Ağaoğulları, D., Gökçe, H., Duman, I., Öveçoğlu, M.L.: Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J. Alloy. Compd. 586, S78–S84 (2014)

    Article  Google Scholar 

  4. Ji, W., Zhang, J., Wang, W., Wang, H., Zhang, F., Wang, Y., et al.: Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J. Eur. Ceram. Soc. 35, 879–886 (2015)

    Article  Google Scholar 

  5. Basu, B., Vleugels, J., Van der Biest, O.: Fretting wear behavior of TiB2-based materials against bearing steel under water and oil lubrication. Wear 250, 631–641 (2001)

    Article  Google Scholar 

  6. Rabiezadeh, A., Ataie, A., Hadian, A.M.: Sintering of Al2O3–TiB2 nano-composite derived from milling assisted sol–gel method. Int. J. Refract. Metal Hard Mater. 33, 58–64 (2012)

    Article  Google Scholar 

  7. Asl, M.S., Ahmadi, Z., Parvizi, S., Balak, Z., Farahbakhsh, I.: Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites. Ceram. Int. 43, 13924–13931 (2017)

    Article  Google Scholar 

  8. Namini, A.S., Gogani, S.N.S., Asl, M.S., Farhadi, K., Kakroudi, M.G., Mohammadzadeh, A.: Microstructural development and mechanical properties of hot pressed SiC reinforced TiB2 based composite. Int. J. Refract. Metal Hard Mater. 51, 169–179 (2015)

    Article  Google Scholar 

  9. Fu, Z., Koc, R.: Pressureless sintering of TiB2 with low concentration of Co binder to achieve enhanced mechanical properties. Mater. Sci. Eng. A 721, 22–27 (2018)

    Article  Google Scholar 

  10. Farahbakhsh, I., Ahmadi, Z., Asl, M.S.: Densification, microstructure and mechanical properties of hot pressed ZrB2–SiC ceramic doped with nano-sized carbon black. Ceram. Int. 43, 8411–8417 (2017)

    Article  Google Scholar 

  11. Demirskyi, D., Borodianska, H., Sakka, Y., Vasylkiv, O.: Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 37, 393–397 (2017)

    Article  Google Scholar 

  12. Lin, J., Yang, Y., Zhang, H., Wu, Z., Huang, Y.: Effect of sintering temperature on the mechanical properties and microstructure of carbon nanotubes toughened TiB2 ceramics densified by spark plasma sintering. Mater. Lett. 166, 280–283 (2016)

    Article  Google Scholar 

  13. Germi, M.D., Mahaseni, Z.H., Ahmadi, Z., Asl, M.S.: Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite. Mater. Charact. 145, 225–232 (2018)

    Article  Google Scholar 

  14. Li, B.: Effect of ZrB2 and SiC addition on TiB2-based ceramic composites prepared by spark plasma sintering. Int. J. Refract. Metal Hard Mater. 46, 84–89 (2014)

    Article  Google Scholar 

  15. Cymerman, K., Oleszak, D., Rosinski, M., Michalski, A.: Structure and mechanical properties of TiB2/TiC–Ni composites fabricated by pulse plasma sintering method. Adv. Powder Technol. 29, 1795–1803 (2018)

    Article  Google Scholar 

  16. Black, J.T., Kohser, R.A.: DeGarmo’s Materials and Processes in Manufacturing. Wiley, Hoboken (2017)

    Google Scholar 

  17. Binner, J., Porter, M., Baker, B., Zou, J., Venkatachalam, V., Diaz, V.R., et al.: Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs–a review. Int. Mater. Rev. 65, 389–444 (2019)

    Article  Google Scholar 

  18. Xue, J.-X., Liu, J.-X., Zhang, G.-J., Zhang, H.-B., Liu, T., Zhou, X.-S., et al.: Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 C for inert matrix fuels. Scripta Mater. 114, 5–8 (2016)

    Article  Google Scholar 

  19. Asl, M.S., Namini, A.S., Motallebzadeh, A., Azadbeh, M.: Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium. Mater. Chem. Phys. 203, 266–273 (2018)

    Article  Google Scholar 

  20. Azizian-Kalandaragh, Y., Namini, A.S., Ahmadi, Z., Asl, M.S.: Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites. Ceram. Int. 44, 19932–19938 (2018)

    Article  Google Scholar 

  21. Oguntuyi, S.D.,Johnson, O.T., Shongwe, M.B.: Spark Plasma Sintering of Ceramic Matrix Composite of ZrB 2 and TiB 2: Microstructure, Densification, and Mechanical Properties—A Review, Metals and Materials International, pp. 1–14 (2020)

    Google Scholar 

  22. Sabahi Namini, A., Azadbeh, M., Shahedi Asl, M.: Effects of in-situ formed TiB whiskers on microstructure and mechanical properties of spark plasma sintered Ti–B4C and Ti–TiB2 composites. Scientia Iranica 25, 762–771 (2018)

    Google Scholar 

  23. Balak, Z., Asl, M.S., Azizieh, M., Kafashan, H., Hayati, R.: Effect of different additives and open porosity on fracture toughness of ZrB2–SiC-based composites prepared by SPS. Ceram. Int. 43, 2209–2220 (2017)

    Article  Google Scholar 

  24. Nikzad, L., Licheri, R., Ebadzadeh, T., Orru, R., Cao, G.: Effect of ball milling on reactive spark plasma sintering of B4C–TiB2 composites. Ceram. Int. 38, 6469–6480 (2012)

    Article  Google Scholar 

  25. Wang, L., Jiang, W., Chen, L.: Rapidly sintering nanosized SiC particle reinforced TiC composites by the spark plasma sintering (SPS) technique. J. Mater. Sci. 39, 4515–4519 (2004)

    Article  Google Scholar 

  26. Song, G.-M., Guo, Y.-K., Zhou, Y., Li, Q.: Preparation and mechanical properties of carbon fiber reinforced-TiC matrix composites. J. Mater. Sci. Lett. 20, 2157–2160 (2001)

    Article  Google Scholar 

  27. Sribalaji, M., Mukherjee, B., Bakshi, S.R., Arunkumar, P., Babu, K.S., Keshri, A.K.: In-situ formed graphene nanoribbon induced toughening and thermal shock resistance of spark plasma sintered carbon nanotube reinforced titanium carbide composite. Compos. Part B Eng. 123, 227–240 (2017)

    Article  Google Scholar 

  28. Chae, K.W., Niihara, K., Kim, D.Y.: Improvements in the mechanical properties of TiC by the dispersion of fine SiC particles. J. Mater. Sci. Lett. 14, 1332–1334 (1995)

    Article  Google Scholar 

  29. Locci, A.M., Orru, R., Cao, G., Munir, Z.A.: Effect of ball milling on simultaneous spark plasma synthesis and densification of TiC–TiB2 composites. Mater. Sci. Eng. A 434, 23–29 (2006)

    Article  Google Scholar 

  30. Cheng, L., Xie, Z., Liu, G.: Spark plasma sintering of TiC ceramic with tungsten carbide as a sintering additive. J. Eur. Ceram. Soc. 33, 2971–2977 (2013)

    Article  Google Scholar 

  31. Fattahi, M., Babapoor, A., Delbari, S.A., Ahmadi, Z., Namini, A.S., Asl, M.S.: Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceram. Int. 46, 12400–12408 (2020)

    Article  Google Scholar 

  32. Fattahi, M., Delbari, S.A., Babapoor, A., Namini, A.S., Mohammadi, M., Asl, M.S.: Triplet carbide composites of TiC, WC, and SiC. Ceram. Int. 46, 9070–9078 (2020)

    Article  Google Scholar 

  33. Chen, J., Li, W., Jiang, W.: Characterization of sintered TiC–SiC composites. Ceram. Int. 35, 3125–3129 (2009)

    Article  Google Scholar 

  34. Nie, J., Wu, Y., Li, P., Li, H., Liu, X.: Morphological evolution of TiC from octahedron to cube induced by elemental nickel. CrystEngComm 14, 2213–2221 (2012)

    Article  Google Scholar 

  35. Liu, N., Chao, S., Huang, X.: Effects of TiC/TiN addition on the microstructure and mechanical properties of ultra-fine grade Ti (C, N)–Ni cermets. J. Eur. Ceram. Soc. 26, 3861–3870 (2006)

    Article  Google Scholar 

  36. Russias, J., Cardinal, S., Aguni, Y., Fantozzi, G., Bienvenu, K., Fontaine, J.: Influence of titanium nitride addition on the microstructure and mechanical properties of TiC-based cermets. Int. J. Refract. Metal Hard Mater. 23, 358–362 (2005)

    Article  Google Scholar 

  37. Pazhouhanfar, Y., Namini, A.S., Delbari, S.A., Nguyen, T.P., Van Le, Q., Shaddel, S., et al.: Microstructural and mechanical characterization of spark plasma sintered TiC ceramics with TiN additive. Ceram. Int. 46, 18924–18932 (2020)

    Article  Google Scholar 

  38. Babapoor, A., Asl, M.S., Ahmadi, Z., Namini, A.S.: Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide. Ceram. Int. 44, 14541–14546 (2018)

    Article  Google Scholar 

  39. Jiang, C.C., Goto, T., Hirai, T.: Microhardness of non-stoichiometric TiCx, plates prepared by chemical vapour deposition. J. Less Common Metals 163, 339–346 (1990)

    Article  Google Scholar 

  40. Zhang, Z., Geng, C., Ke, Y., Li, C., Jiao, X., Zhao, Y., et al.: Processing and mechanical properties of nonstoichiometric TiCx (0.3 ≤ x ≤ 0.5). Ceram. Int. 44, 18996–19001 (2018)

    Article  Google Scholar 

  41. Shaddel, S., Namini, A.S., Pazhouhanfar, Y., Delbari, S.A., Fattahi, M., Asl, M.S.: A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics. Ceram. Int. 46, 15982–15990 (2020)

    Article  Google Scholar 

  42. Fattahi, M., Pazhouhanfar, Y., Delbari, S.A., Shaddel, S., Namini, A.S., Asl, M.S.: Strengthening of novel TiC–AlN ceramic with in-situ synthesized Ti3Al intermetallic compound. Ceram. Int. 46, 14105–14113 (2020)

    Article  Google Scholar 

  43. Yonenaga, I.: Hardness of bulk single-crystal GaN and AlN. Mater. Res. Soc. Internet J. Nitride Semiconductor Res. 7, 1–4 (2002)

    Google Scholar 

  44. Chen, B., Xiong, H., Sun, B., Tang, S., Du, B., Li, N.: Microstructures and mechanical properties of Ti3Al/Ni-based superalloy joints arc welded with Ti–Nb and Ti–Ni–Nb filler alloys. Prog. Nat. Sci. Mater. Int. 24, 313–320 (2014)

    Article  Google Scholar 

  45. Asl, M.S., Ahmadi, Z., Namini, A.S., Babapoor, A., Motallebzadeh, A.: Spark plasma sintering of TiC–SiCw ceramics. Ceram. Int. 45, 19808–19821 (2019)

    Article  Google Scholar 

  46. Teber, A., Schoenstein, F., Têtard, F., Abdellaoui, M., Jouini, N.: Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application. Int. J. Refract. Metal Hard Mater. 30, 64–70 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Appreciation goes to all the author for their contributions to the success of this review.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oguntuyi, S.D., Johnson, O., Shongwe, M.B. (2021). Spark Plasma Sintering of Ceramic Matrix Composite of TiC: Microstructure, Densification, and Mechanical Properties: A Review. In: Awang, M., Emamian, S.S. (eds) Advances in Material Science and Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-3641-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-3641-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-3640-0

  • Online ISBN: 978-981-16-3641-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics