Skip to main content

Advertisement

Log in

The spark plasma sintering of the optimized parametric process for the magnesium alloy reinforced hybrid nano-ceramics

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A novel hybridized magnesium-based metal matrix composite consolidated with 4wt%AlN-4wt% Y2O3-4wt%VB nano-ceramics has been developed via powder metallurgy (PM) of spark plasma sintering (SPS) process. A statistical Taguchi design was employed to examine the significant effects of the individual or the interactive sintering parametric process, namely, sintering temperature, pressure, dwell time, and heating rate on the relative density, hardness, and nanohardness of the developed composite. The outcome of the optimized process shows that all the factors contributed to the densification and hardness of the composite, but temperature was seen as the major factor that significantly influenced the process beyond 90%. The highest microhardness value of 106 HV and 2.8 GPa nanohardness was exhibited by the material sintered at 500 °C, 40 MPa of pressure, 5 min of dwell time, and a heating rate of 100 °C/min. Likewise, a minimum crystallite size of 8.87 nm and the smallest grain size of 17.68 µm were achieved at the highest sintering temperature. However, the modeling response suggested that full densification (relative density of about 99%) can be achieved at sintering temperature of 500 °C, pressure of 30 MPa, dwell time of 5 min, and heating rate of 75 °C/min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used in this research are not available publicly. However, it can be obtained from the authors once a justifiable request is made.

Code availability

Not applicable.

References

  1. Ali M, Hussein MA, Al-Aqeeli N (2020) Optimization of spark plasma sintering parameters using the Taguchi method for developing Mg-based composites. JOM 72(3):1186–1194

    Article  Google Scholar 

  2. Dey A, Pandey KM (2015) Magnesium metal matrix composites-a review. Rev Adv Mater Sci 42(1)

  3. Del Campo R, Savoini B, Muñoz A, Monge MA, Garcés G (2014) Mechanical properties and corrosion behavior of Mg–HAP composites. J Mech Behav Biomed Mater 39:238–246

    Article  Google Scholar 

  4. Kand AJT, Afaghi F, Tabrizi AT, Aghajani H, Kivrak HD (2021) Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route. Synth Sinter 1(2):85–91

    Article  Google Scholar 

  5. Zhou YJ, Jiang AY, Liu JX (2013) The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy. In Applied Mechanics and Materials (Vol. 377, pp. 250–254). Trans Tech Publications Ltd

  6. Meng G, Yue TM, Lin X, Yang H, Xie H, Ding X (2015) Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites. Opt Laser Technol 70:119–127

    Article  Google Scholar 

  7. Yu W, Wang X, Zhao H, Ding C, Huang Z, Zhai H, Guo Z, Xiong S (2017) Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting. J Alloy Compd 702:199–208

    Article  Google Scholar 

  8. Xiong Y, Zhang MX (2014) The effect of cold sprayed coatings on the mechanical properties of AZ91D magnesium alloys. Surf Coat Technol 253:89–95

    Article  Google Scholar 

  9. Zhang L, Wang Q, Liao W, Guo W, Ye B, Li W, Jiang H, Ding W (2017) Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles. Mater Charact 126:17–27

    Article  Google Scholar 

  10. Liu T, Li Y, Zhang Y, Zhao M, Wen Z, Zhang L (2021) A biodegradable, mechanically tunable micro-arc oxidation AZ91D-based composite implant with calcium phosphate/chitosan coating promotes long-term bone tissue regeneration. Biotechnol J 16(10):2000653

    Article  Google Scholar 

  11. Khatkar SK, Verma R, Kharb SS, Thakur A, Sharma R (2021) Optimization and effect of reinforcements on the sliding wear behavior of self-lubricating AZ91D-SiC-Gr hybrid composites. SILICON 13(5):1461–1473

    Article  Google Scholar 

  12. Rončević IŠ, Grubač Z, Metikoš-Huković M (2014) Electrodeposition of hydroxyapatite coating on AZ91D alloy for biodegradable implant application. Int J Electrochem Sci 9:5907–5923

    Google Scholar 

  13. Ponappa K, Aravindan S, Rao PV (2013) Influence of Y2O3 particles on mechanical properties of magnesium and magnesium alloy (AZ91D). J Compos Mater 47(10):1231–1239

    Article  Google Scholar 

  14. Matta AK, Koka NSS, Devarakonda SK (2020) Recent studies on particulate reinforced AZ91 magnesium composites fabricated by stir casting-a review. J Mech Energy Eng 4

  15. Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4(1):65–83

    Article  Google Scholar 

  16. Sankaranarayanan S, Habibi MK, Jayalakshmi S, Jia Ai K, Almajid A, Gupta M (2015) Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties. Mater Sci Technol 31(9):1122–1131

    Article  Google Scholar 

  17. Zhang H, Zhao Y, Yan Y, Fan J, Wang L, Dong H, Xu B (2017) Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering followed by hot extrusion. J Alloy Compd 725:652–664

    Article  Google Scholar 

  18. Shen MJ, Wang XJ, Ying T, Wu K, Song WJ (2016) Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles. J Alloy Compd 686:831–840

    Article  Google Scholar 

  19. Shang J, Ke L, Liu F, Lv F, Xing L (2019) Aging behavior of nano SiC particles reinforced AZ91D composite fabricated via friction stir processing. J Alloy Compd 797:1240–1248

    Article  Google Scholar 

  20. Zhao R, Pei J, Du W, Zhao Z, Zhang L, Gao J, Bai P, Tie D (2021) Fabrication of magnesium-coated graphene and its effect on the microstructure of reinforced AZ91 magnesium-matrix composites. Adv Compos Hybrid Mater 1–9

  21. Raja KS, Kumar UM, Mathivanan S, Ganesan S, ArunKumar T, Hemanandh J, Kumar JS (2021) Mechanical and microstructural properties of graphene reinforced magnesium composite. Mater Today Proc 44:3571–3574

    Article  Google Scholar 

  22. Saberi A, Bakhsheshi-Rad HR, Karamian E, Kasiri-Asgarani M, Ghomi H (2020) Magnesium-graphene nano-platelet composites: corrosion behavior, mechanical and biological properties. J Alloy Compd 821:153379

    Article  Google Scholar 

  23. Tun KS, Gupta M (2007) Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave-assisted powder metallurgy method. Compos Sci Technol 67(13):2657–2664

    Article  Google Scholar 

  24. Hassan SF, Tun KS, Gupta M (2011) Effect of sintering techniques on the microstructure and tensile properties of nano-yttria particulates reinforced magnesium nanocomposites. J Alloy Compd 509(11):4341–4347

    Article  Google Scholar 

  25. Pc E, Radhakrishnan G, Emarose S (2021) Investigation into physical, microstructural and mechanical behaviour of titanium dioxide nanoparticulate reinforced magnesium composite. Mater Technol 36(10):575–584

    Article  Google Scholar 

  26. Rahmani K, Majzoobi GH, Sadooghi A, Kashfi M (2020) Mechanical and physical characterization of Mg-TiO2 and Mg-ZrO2 nanocomposites produced by hot-pressing. Mater Chem Phys 246:122844

    Article  Google Scholar 

  27. Sahoo SK, Sahoo BN, Panigrahi SK (2020) Effect of in-situ sub-micron sized TiB2 reinforcement on microstructure and mechanical properties in ZE41 magnesium matrix composites. Mater Sci Eng A 773:138883

    Article  Google Scholar 

  28. Xiao P, Gao Y, Yang C, Liu Z, Li Y, Xu F (2018) Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles. Mater Sci Eng A 710:251–259

    Article  Google Scholar 

  29. Aydin F, Sun Y (2018) Investigation of wear behaviour and microstructure of hot-pressed TiB2 particulate-reinforced magnesium matrix composites. Can Metall Q 57(4):455–469

    Article  Google Scholar 

  30. Borodianskiy K, Zinigrad M (2016) Modification performance of WC nanoparticles in aluminum and an Al-Si casting alloy. Metall Mater Trans B 47:1302–1308. https://doi.org/10.1007/s11663-016-0586-0

    Article  Google Scholar 

  31. Pal A, Poria S, Sutradhar G, Sahoo P (2018) Tribological behavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method. Mater Res Express 5(3):036521

    Article  Google Scholar 

  32. Karuppusamy P, Lingadurai K, Sivananth V, Arulkumar S (2021) A study on mechanical properties of tungsten carbide reinforced magnesium metal matrix composites for the application of piston. Int J Light Mater Manuf 4(4):449–459

    Google Scholar 

  33. Paramsothy M, Tan XH, Chan J, Kwok R, Gupta M (2012) Si3N4 nanoparticle addition to concentrated magnesium alloy AZ81: enhanced tensile ductility and compressive strength. Int Sch Res Not 2012

  34. Balikai A, Adarsha H, Keshavamurthy R (2022) Microstructure and nanoindentation response of Si3N4-reinforced magnesium-based composite synthesized by powder metallurgy route. J Inst Eng (India) Series D 1–13

  35. Hussein MA, Suryanarayana C, Arumugam MK, Al-Aqeeli N (2015) Effect of sintering parameters on microstructure, mechanical properties and electrochemical behavior of Nb–Zr alloy for biomedical applications. Mater Des 83:344–351

    Article  Google Scholar 

  36. Kumar PS, Ponappa K, Udhayasankar M, Aravindkumar B (2017) Dry sliding wear and mechanical characterization of Mg based composites by uniaxial cold press technique. Arch Metall Mater.

  37. Singh LK, Bhadauria A, Jana S, Laha T (2018) Effect of sintering temperature and heating rate on crystallite size, densification behaviour and mechanical properties of Al-MWCNT nanocomposite consolidated via spark plasma sintering. Acta Metallurgica Sinica (English Letters) 31(10):1019–1030

    Article  Google Scholar 

  38. Aravindan S, Rao PV, Ponappa K (2015) Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process. J Magnes Alloys 3(1):52–62

    Article  Google Scholar 

  39. Huang SJ, Abbas A (2020) Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. J Alloy Compd 817:153321

    Article  Google Scholar 

  40. Dinaharan I, Akinlabi ET (2018) Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Compos Commun 9:22–26

    Article  Google Scholar 

  41. Sunil BR, Reddy GPK, Patle H, Dumpala R (2016) Magnesium based surface metal matrix composites by friction stir processing. J Magnes alloys 4(1):52–61

    Article  Google Scholar 

  42. Riquelme A, Rodrigo P, Escalera-Rodriguez MD, Rams J (2021) Evaluation of the wear resistance and corrosion behavior of laser cladding al/sic metal matrix composite coatings on ze41 magnesium alloy. Coatings 11(6):639

    Article  Google Scholar 

  43. Park Y, Cho K, Park I, Park Y (2011) Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes. Procedia Eng 10:1446–1450

    Article  Google Scholar 

  44. Chen B, Yin KY, Lu TF, Sun BY, Dong Q, Zheng JX, Lu C, Li ZC (2016) AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J Mater Sci Technol 32(9):858–864

    Article  Google Scholar 

  45. Meenashisundaram GK, Gupta M (2014) Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J Alloy Compd 593:176–183

    Article  Google Scholar 

  46. Paramsothy M, Tan XH, Chan J, Kwok R, Gupta M (2012) Si3N4 nanoparticle addition to concentrated magnesium alloy AZ81: enhanced tensile ductility and compressive strength. Int Sch Res Not 2012

  47. Dodi E, Balak Z, Kafashan H (2022) Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites. Synth Sinter 2(1):31–36

    Article  Google Scholar 

  48. Cohen S, Ratzker B, Sokol M, Kalabukhov S, Frage N (2018) Polycrystalline transparent magnesium aluminate spinel processed by a combination of spark plasma sintering (SPS) and hot isostatic pressing (HIP). J Eur Ceram Soc 38(15):5153–5159

    Article  Google Scholar 

  49. Shahbazi H, Shokrollahi H, Tataei M (2018) Gel-casting of transparent magnesium aluminate spinel ceramics fabricated by spark plasma sintering (SPS). Ceram Int 44(5):4955–4960

    Article  Google Scholar 

  50. Wang S, Huang Y, Yang L, Zeng Y, Hu Y, Zhang X, Sun Q, Shi S, Meng G, Hort N (2021) Microstructure and mechanical properties of Mg-3Sn-1Ca reinforced with AlN nano-particles. J Magnes Alloys

  51. Yang C, Zhang B, Zhao D, Lü H, Zhai T, Liu F (2016) Microstructure and mechanical properties of AlN particles in situ reinforced Mg matrix composites. Mater Sci Eng A 674:158–163

    Article  Google Scholar 

  52. Katsarou L, Mounib M, Lefebvre W, Vorozhtsov S, Pavese M, Badini C, Molina-Aldareguia JM, Jimenez CC, Prado MTP, Dieringa H (2016) Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring. Mater Sci Eng A 659:84–92

    Article  Google Scholar 

  53. Falcon-Franco L, Rosales I, García-Villarreal S, Curiel FF, Arizmendi-Morquecho A (2016) Synthesis of magnesium metallic matrix composites and the evaluation of aluminum nitride addition effect. J Alloy Compd 663:407–412

    Article  Google Scholar 

  54. Ma L, Zhang J, Yue G, Zhang H, Zhou L, Zhang H (2016) Improvement and application of Y2O3 directional solidification crucible. Chin J Aeronaut 29(2):554–559

    Article  Google Scholar 

  55. Tekoğlu E, Ağaoğulları D, Mertdinç S, Paksoy AH, Öveçoğlu ML (2018) Microstructural characterizations and mechanical properties of NbB2 and VB particulate-reinforced eutectic Al-12.6 wt% Si composites via powder metallurgy method. Adv Powder Technol 29(9):2070–208

    Article  Google Scholar 

  56. Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2019) Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi design of experiment. Int J Adv Manuf Technol 100(5):1563–1573

    Article  Google Scholar 

  57. Stanford N, Atwell D, Beer A, Davies C, Barnett MR (2008) Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scripta Mater 59(7):772–775

    Article  Google Scholar 

  58. Salamon D, Shen Z (2008) Pressure-less spark plasma sintering of alumina. Mater Sci Eng A 475(1–2):105–107

    Article  Google Scholar 

Download references

Funding

There is no special grant for this research. However, necessary support was given by the Department of Chemical, Metallurgical, and Materials Engineering of Tshwane University of Technology, Pretoria, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juwon Fayomi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayomi, J., Popoola, A.P., Popoola, O. et al. The spark plasma sintering of the optimized parametric process for the magnesium alloy reinforced hybrid nano-ceramics. Int J Adv Manuf Technol 124, 1875–1889 (2023). https://doi.org/10.1007/s00170-022-10617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-10617-1

Keywords

Navigation