Skip to main content
Log in

Spark Plasma Sintering of Ceramic Matrix Composite of ZrB2 and TiB2: Microstructure, Densification, and Mechanical Properties—A Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The relentless effort for the innovation of improved materials for application in high-temperature environment, structural and functional application has paved the way for the synthesis of ceramics based materials—with current research activities being channeled towards the application of metallic and non-metallic based nano-powders as a sintering additive or as a reinforcement for ceramic-based materials. Metallic and non-metallic based nanopowders additive possesses excellent thermal, physical, and mechanical properties and hence, serves as a good additive for ceramic-based materials in achieving good sinterability, full densification, and excellent mechanical properties. One of the critical factors that have affected the densification and properties of the ceramic-based material is the type of consolidation applied. Powder metallurgy (PM) is the most prominent technique to date for the syntheses of ceramic-based materials. Although previous reviews have stated diverse PM techniques viz., hot press, hot-isostatic press, pressureless sintering, spark plasma sintering (SPS). More also, various reinforcement such as Metallic and non-metallic based nano-powders additive has been used in achieving the desired properties. SPS amidst diverse PM techniques has been given high attention to the routes of manufacturing ceramic materials because good microstructures and excellent mechanical properties can be achieved. This review focuses on past, present, and future works of ZrB2, and TiB2, reinforced with sintering additive with more attention on silicides, carbides, or nitrides based material as sintering additive.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Mukhopadhyay, G.B. Raju, B. Basu, Ultra-high temperature ceramics: processing, properties, and applications, in MAX Phases and Ultra-High Temperature Ceramics for Extreme Environments, ed. by I.M. Low (IGI Global, Hershey, 2013), pp. 49–99

    Google Scholar 

  2. B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature boride ceramics. Prog. Mater Sci. 111, 100651 (2020)

    CAS  Google Scholar 

  3. R. Mukherjee, B. Basu, Opportunities and challenges in processing and fabrication of ultra-high temperature ceramics for hypersonic space vehicles: a case study with ZrB2–SiC. Adv. Appl. Ceram. 117, s2–s8 (2018)

    CAS  Google Scholar 

  4. M. Fattahi, A. Babapoor, S.A. Delbari, Z. Ahmadi, A. S. Namini, M.S. Asl, Strengthening of TiC ceramics sintered by spark plasma via nano-graphite addition. Ceram. Int. 46, 12400–12408 (2020)

  5. R. Orrù, G. Cao, Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra-high temperature ceramics (UHTC) materials. Materials 6, 1566–1583 (2013)

    Google Scholar 

  6. D. Segal, Chemical Synthesis of Advanced Ceramic Materials, vol. 1 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  7. M. Alsawat, T. Altalhi, N.F. Alotaibi, Z.I. Zaki, Titanium carbide–titanium boride composites by self-propagating high-temperature synthesis approach: influence of zirconia additives on the mechanical properties. Results Phys. 13, 102292 (2019)

    Google Scholar 

  8. J.T. Black, R.A. Kohser, DeGarmo’s Materials and Processes in Manufacturing (Wiley, Hoboken, 2017)

    Google Scholar 

  9. J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, V.R. Diaz et al., Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs—a review. Int. Mater. Rev. (2019). https://doi.org/10.1080/09506608.2019.1652006

  10. J.-X. Xue, J.-X. Liu, G.-J. Zhang, H.-B. Zhang, T. Liu, X.-S. Zhou et al., Improvement in mechanical/physical properties of TiC-based ceramics sintered at 1500 C for inert matrix fuels. Scr. Mater. 114, 5–8 (2016)

    CAS  Google Scholar 

  11. Z. Feng, J. Qi, X. Guo, Y. Wang, X. Cao, Y. Yu et al., A new and highly active sintering additive: SiO2 for highly-transparent AlON ceramic. J. Alloys Compd. 787, 254–259 (2019)

    CAS  Google Scholar 

  12. G.B. Raju, B. Basu, Densification, sintering reactions, and properties of titanium diboride with titanium disilicide as a sintering aid. J. Am. Ceram. Soc. 90, 3415–3423 (2007)

    CAS  Google Scholar 

  13. G.B. Raju, A. Mukhopadhyay, K. Biswas, B. Basu, Densification and high-temperature mechanical properties of hot-pressed TiB2–(0–10 wt%) MoSi2 composites. Scr. Mater. 61, 674–677 (2009)

    CAS  Google Scholar 

  14. T.S.R.C. Murthy, J.K. Sonber, C. Subramanian, R.K. Fotedar, M.R. Gonal, A.K. Suri, Effect of CrB2 addition on densification, properties and oxidation resistance of TiB2. Int. J. Refract. Met. Hard Mater. 27, 976–984 (2009)

    CAS  Google Scholar 

  15. S.H. Kang, D.J. Kim, E.S. Kang, S.S. Baek, Pressureless sintering and properties of titanium diboride ceramics containing chromium and iron. J. Am. Ceram. Soc. 84, 893–895 (2001)

    CAS  Google Scholar 

  16. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, D.T. Ellerby, High-strength zirconium diboride-based ceramics. J. Am. Ceram. Soc. 87, 1170–1172 (2004)

    CAS  Google Scholar 

  17. F. Monteverde, A. Bellosi, Efficacy of HfN as a sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics. J. Mater. Res. 19, 3576–3585 (2004)

    CAS  Google Scholar 

  18. F. Monteverde, A. Bellosi, Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates. Solid State Sci. 7, 622–630 (2005)

    CAS  Google Scholar 

  19. M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)

    CAS  Google Scholar 

  20. R.K. Bordia, S.J.L. Kang, E.A. Olevsky, Current understanding and future research directions at the onset of the next century of sintering science and technology. J. Am. Ceram. Soc. 100, 2314–2352 (2017)

    CAS  Google Scholar 

  21. R. Prasad, Spark plasma sintering of cerium dioxide and its composites (Doctoral dissertation, University of British Columbia) (2017)

  22. A. Prasad, L. Malakkal, L. Bichler, J. Szpunar, Effect of spark plasma sintering process parameters on density and microstructure of cerium(IV) oxide. Proceedings of The Canadian Society for Mechanical Engineering International Congress (2016)

  23. N. Gupta, A. Mukhopadhyay, K. Pavani, B. Basu, Spark plasma sintering of novel ZrB2–SiC–TiSi2 composites with better mechanical properties. Mater. Sci. Eng. A 534, 111–118 (2012)

    CAS  Google Scholar 

  24. Ö. Balcı, U. Burkhardt, M. Schmidt, J. Hennicke, M.B. Yağcı, M. Somer, Densification, microstructure and properties of TiB2 ceramics fabricated by spark plasma sintering. Mater. Charact. 145, 435–443 (2018)

    Google Scholar 

  25. R.-G. Duan, G.-D. Zhan, J.D. Kuntz, B.H. Kear, A.K. Mukherjee, Spark plasma sintering (SPS) consolidated ceramic composites from plasma-sprayed metastable Al2TiO5 powder and nano-Al2O3, TiO2, and MgO powders. Mater. Sci. Eng. A 373, 180–186 (2004)

    Google Scholar 

  26. J. Laszkiewicz-Łukasik, L. Jaworska, P. Putyra, P. Klimczyk, G. Garzeł, The influence of SPS heating rates on the synthesis reaction of tantalum diboride. Bol. Soc. Esp. Cerám. Vidr. 55, 159–168 (2016)

    Google Scholar 

  27. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)

    CAS  Google Scholar 

  28. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347–1364 (2007)

    CAS  Google Scholar 

  29. S. Chakraborty, P.K. Das, D. Ghosh, Spark plasma sintering and structural properties of ZrB2 based ceramics: a review. Rev. Adv. Mater. Sci. 44, 182–193 (2016)

  30. J.K. Sonber, A.K. Suri, Synthesis and consolidation of zirconium diboride. Adv. Appl. Ceram. 110, 321–334 (2011)

    CAS  Google Scholar 

  31. S.-Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review. J. Eur. Ceram. Soc. 29, 995–1011 (2009)

    CAS  Google Scholar 

  32. M.S. Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2-based composites: a review. Ceram. Int. 44, 7334–7348 (2018)

    CAS  Google Scholar 

  33. B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB2 based materials. Int. Mater. Rev. 51, 352–374 (2006)

    CAS  Google Scholar 

  34. V. Mazánek, H. Nahdi, J. Luxa, Z. Sofer, M. Pumera, Electrochemistry of layered metal diborides. Nanoscale 10, 11544–11552 (2018)

    Google Scholar 

  35. M.S. Asl, S.A. Delbari, F. Shayesteh, Z. Ahmadi, A. Motallebzadeh, Reactive spark plasma sintering of TiB2–SiC–TiN novel composite. Int. J. Refract. Met. Hard Mater. 81, 119–126 (2019)

    Google Scholar 

  36. M.S. Asl, M.G. Kakroudi, M. Rezvani, F. Golestani-Fard, Significance of hot-pressing parameters on the microstructure and densification behavior of zirconium diboride. Int. J. Refract. Met. Hard Mater. 50, 140–145 (2015)

    Google Scholar 

  37. Z. Balak, M. Azizieh, H. Kafashan, M.S. Asl, Z. Ahmadi, Optimization of effective parameters on thermal shock resistance of ZrB2–SiC-based composites prepared by SPS: using Taguchi design. Mater. Chem. Phys. 196, 333–340 (2017)

    CAS  Google Scholar 

  38. N.P. Vafa, B. Nayebi, M.S. Asl, M.J. Zamharir, M.G. Kakroudi, Reactive hot pressing of ZrB2-based composites with changes in ZrO2/SiC ratio and sintering conditions. Part II: mechanical behavior. Ceram. Int. 42, 2724–2733 (2016)

    Google Scholar 

  39. M.S. Asl, M.G. Kakroudi, B. Nayebi, A fractographical approach to the sintering process in porous ZrB2–B4C binary composites. Ceram. Int. 41, 379–387 (2015)

    Google Scholar 

  40. B. Basu, K. Balani, Advanced Structural Ceramics (Wiley, Hoboken, 2011)

    Google Scholar 

  41. S.R. Mercurio, Effect of coprecipitation of sintering aids on the microstructure and grain boundary development of sintered silicon carbide. (Doctoral dissertation, Rutgers University-Graduate School-New Brunswick) (2011)

  42. S. Chakraborty, A.R. Mallick, D. Debnath, P.K. Das, Densification, mechanical and tribological properties of ZrB2 by SPS: effect of pulsed current. Int. J. Refract. Met. Hard Mater. 48, 150–156 (2015)

    CAS  Google Scholar 

  43. T.S.R.C. Murthy, B. Basu, A. Srivastava, R. Balasubramaniam, A.K. Suri, Tribological properties of TiB2 and TiB2–MoSi2 ceramic composites. J. Eur. Ceram. Soc. 26, 1293–1300 (2006)

    CAS  Google Scholar 

  44. Z.H. Zhang, X.B. Shen, F.C. Wang, S.K. Lee, L. Wang, Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB2 ceramics. Mater. Sci. Eng. A 527, 5947–5951 (2010)

    Google Scholar 

  45. F. Monteverde, A. Bellosi, Beneficial effects of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Adv. Eng. Mater. 5, 508–512 (2003)

    CAS  Google Scholar 

  46. H. Jin, S. Meng, W. Xie, C. Xu, J. Niu, ZrB2-CNTs nanocomposites fabricated by spark plasma sintering. Materials 9, 967 (2016)

    Google Scholar 

  47. M. Ikegami, S. Guo, Y. Kagawa, Densification behavior and microstructure of spark plasma sintered ZrB2-based composites with SiC particles. Ceram. Int. 38, 769–774 (2012)

    CAS  Google Scholar 

  48. S.Q. Guo, T. Nishimura, Y. Kagawa, J.M. Yang, Spark plasma sintering of zirconium diborides. J. Am. Ceram. Soc. 91, 2848–2855 (2008)

    CAS  Google Scholar 

  49. S. Grasso, T. Saunders, H. Porwal, O. Cedillos-Barraza, D.D. Jayaseelan, W.E. Lee et al., Flash spark plasma sintering (FSPS) of pure ZrB2. J. Am. Ceram. Soc. 97, 2405–2408 (2014)

    CAS  Google Scholar 

  50. R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, Initial oxidation behaviors of ZrB2–SiC–ZrC ternary composites above 2000 °C. J. Alloys Compd. 731, 310–317 (2018)

    CAS  Google Scholar 

  51. M. Quarto, G. Bissacco, G. D’Urso, Machinability and energy efficiency in micro-EDM milling of zirconium boride reinforced with silicon carbide fibers. Materials 12, 3920 (2019)

    CAS  Google Scholar 

  52. E.W. Neuman, G.E. Hilmas, W.G. Fahrenholtz, Mechanical behavior of zirconium diboride–silicon carbide ceramics at elevated temperature in air. J. Eur. Ceram. Soc. 33, 2889–2899 (2013)

    CAS  Google Scholar 

  53. D. Sciti, L. Silvestroni, G. Celotti, C. Melandri, S. Guicciardi, Sintering and mechanical properties of ZrB2–TaSi2 and HfB2–TaSi2 ceramic composites. J. Am. Ceram. Soc. 91, 3285–3291 (2008)

    CAS  Google Scholar 

  54. A. Purwar, R. Mukherjee, K. Ravikumar, S. Ariharan, N.K. Gopinath, B. Basu, Development of ZrB2–SiC–Ti by multi-stage spark plasma sintering at 1600 °C. J. Ceram. Soc. Jpn. 124, 393–402 (2016)

    CAS  Google Scholar 

  55. W.G. Fahrenholtz, G.E. Hilmas, A.L. Chamberlain, J.W. Zimmermann, Processing and characterization of ZrB2-based ultra-high temperature monolithic and fibrous monolithic ceramics. J. Mater. Sci. 39, 5951–5957 (2004)

    CAS  Google Scholar 

  56. W.C. Tripp, H.C. Graham, Thermogravi metric study of the oxidation of ZrB2 in the temperature range of 800 to 1500°C. J. Electrochem. Soc. 118, 1195 (1971)

    CAS  Google Scholar 

  57. X. Zhang, R. Liu, X. Xiong, Z. Chen, Mechanical properties and ablation behavior of ZrB2–SiC ceramics fabricated by spark plasma sintering. Int. J. Refract. Met. Hard Mater. 48, 120–125 (2015)

    CAS  Google Scholar 

  58. R. Licheri, R. Orru, C. Musa, A.M. Locci, G. Cao, Spark plasma sintering of ZrB2-and HfB2-based ultra high temperature ceramics prepared by SHS. Int. J. Self Propag. High Temp. Synth. 18, 15–24 (2009)

    CAS  Google Scholar 

  59. I. Akin, M. Hotta, F.C. Sahin, O. Yucel, G. Goller, T. Goto, Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering. J. Eur. Ceram. Soc. 29, 2379–2385 (2009)

    CAS  Google Scholar 

  60. S.S. Hwang, A.L. Vasiliev, N.P. Padture, Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids. Mater. Sci. Eng. A 464, 216–224 (2007)

    Google Scholar 

  61. M.S. Asl, M.G. Kakroudi, A processing-microstructure correlation in ZrB2–SiC composites hot-pressed under a load of 10 MPa. Univers. J. Mater. Sci. 3, 14–21 (2015)

    Google Scholar 

  62. F. Monteverde, Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2. Appl. Phys. A 82, 329–337 (2006)

    CAS  Google Scholar 

  63. R. Stadelmann, M. Lugovy, N. Orlovskaya, P. McHaffey, M. Radovic, V.M. Sglavo et al., Mechanical properties and residual stresses in ZrB2–SiC spark plasma sintered ceramic composites. J. Eur. Ceram. Soc. 36, 1527–1537 (2016)

    CAS  Google Scholar 

  64. Y. Kubota, H. Tanaka, Y. Arai, R. Inoue, Y. Kogo, K. Goto, Oxidation behavior of ZrB2–SiC–ZrC at 1700 °C. J. Eur. Ceram. Soc. 37, 1187–1194 (2017)

    CAS  Google Scholar 

  65. J. Bull, M. J. White, L. Kaufman, Ablation resistant zirconium and hafnium ceramics. Google Patents (1998)

  66. Z. Wang, C. Hong, X. Zhang, X. Sun, J. Han, Microstructure and thermal shock behavior of ZrB2–SiC–graphite composite. Mater. Chem. Phys. 113, 338–341 (2009)

    CAS  Google Scholar 

  67. Z. Wu, Z. Wang, G. Shi, J. Sheng, Effect of surface oxidation on thermal shock resistance of the ZrB2–SiC–ZrC ceramic. Compos. Sci. Technol 71, 1501–1506 (2011)

    CAS  Google Scholar 

  68. A. Snyder, D. Quach, J.R. Groza, T. Fisher, S. Hodson, L.A. Stanciu, Spark Plasma Sintering of ZrB2–SiC–ZrC ultra-high temperature ceramics at 1800 C. Mater. Sci. Eng. A 528, 6079–6082 (2011)

    CAS  Google Scholar 

  69. H. Wang, C.A. Wang, X. Yao, D. Fang, Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 90, 1992–1997 (2007)

    CAS  Google Scholar 

  70. I. Akin, O. Kaya, Microstructures and properties of silicon carbide-and graphene nanoplatelet-reinforced titanium diboride composites. J. Alloys Compd. 729, 949–959 (2017)

    CAS  Google Scholar 

  71. Q. Guo, J. Li, Q. Shen, L. Zhang, Preparation, microstructure, and mechanical properties of ZrB2-based ceramics with layered Zr2Al4C5 inclusions. Ceram. Int. 39, 2215–2222 (2013)

    CAS  Google Scholar 

  72. F. Ghafuri, M. Ahmadian, R. Emadi, M. Zakeri, Effects of SPS parameters on the densification and mechanical properties of TiB2–SiC composite. Ceram. Int. 45, 10550–10557 (2019)

    CAS  Google Scholar 

  73. S. Guo, Y. Kagawa, T. Nishimura, H. Tanaka, Thermal and electric properties in hot-pressed ZrB2–MoSi2–SiC composites. J. Am. Ceram. Soc. 90, 2255–2258 (2007)

    CAS  Google Scholar 

  74. A. Bellosi, F. Monteverde, D. Sciti, Fast densification of ultra-high-temperature ceramics by spark plasma sintering. Int. J. Appl. Ceram. Technol. 3, 32–40 (2006)

    CAS  Google Scholar 

  75. D. Sciti, L. Silvestroni, M. Nygren, Spark plasma sintering of Zr-and Hf-borides with decreasing amounts of MoSi2 as a sintering aid. J. Eur. Ceram. Soc. 28, 1287–1296 (2008)

    CAS  Google Scholar 

  76. A. Balbo, D. Sciti, Spark plasma sintering and hot pressing of ZrB2–MoSi2 ultra-high-temperature ceramics. Mater. Sci. Eng. A 475, 108–112 (2008)

    Google Scholar 

  77. D. Sciti, F. Monteverde, S. Guicciardi, G. Pezzotti, A. Bellosi, Microstructure and mechanical properties of ZrB2–MoSi2 ceramic composites produced by different sintering techniques. Mater. Sci. Eng. A 434, 303–309 (2006)

    Google Scholar 

  78. J.J. Meléndez-Martınez, A. Domınguez-Rodrıguez, F. Monteverde, C. Melandri, G. De Portu, Characterisation and high-temperature mechanical properties of zirconium boride-based materials. J. Eur. Ceram. Soc. 22, 2543–2549 (2002)

    Google Scholar 

  79. D. Jain, K.M. Reddy, A. Mukhopadhyay, B. Basu, Achieving uniform microstructure and superior mechanical properties in ultrafine-grained TiB2–TiSi2 composites using innovative multi-stage spark plasma sintering. Mater. Sci. Eng. A 528, 200–207 (2010)

    Google Scholar 

  80. K.M. Reddy, N. Kumar, B. Basu, Inhibition of grain growth during the final stage of multi-stage spark plasma sintering of oxide ceramics. Scr. Mater. 63, 585–588 (2010)

    Google Scholar 

  81. K.M. Reddy, N. Kumar, B. Basu, Innovative multi-stage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. Scr. Mater. 62, 435–438 (2010)

    Google Scholar 

  82. S.K. Thimmappa, B.R. Golla, V.V.B. Prasad, B. Majumdar, B. Basu, Phase stability, hardness and oxidation behaviour of spark plasma sintered ZrB2–SiC–Si3N4 composites. Ceram. Int. 45, 9061–9073 (2019)

    CAS  Google Scholar 

  83. B.R. Golla, S.K. Thimmappa, Comparative study on microstructure and oxidation behaviour of ZrB2-20 vol% SiC ceramics reinforced with Si3N4/Ta additives. J. Alloys Compd. 797, 92–100 (2019)

    CAS  Google Scholar 

  84. M.S. Asl, Z. Ahmadi, S. Parvizi, Z. Balak, I. Farahbakhsh, Contribution of SiC particle size and spark plasma sintering conditions on grain growth and hardness of TiB2 composites. Ceram. Int. 43, 13924–13931 (2017)

    Google Scholar 

  85. A.S. Namini, S.N.S. Gogani, M.S. Asl, K. Farhadi, M.G. Kakroudi, A. Mohammadzadeh, Microstructural development and mechanical properties of hot-pressed SiC reinforced TiB2 based composite. Int. J. Refract. Met. Hard Mater. 51, 169–179 (2015)

    Google Scholar 

  86. Y. Wang, M. Yao, Z. Hu, H. Li, J.-H. Ouyang, L. Chen et al., Microstructure and mechanical properties of TiB2-40 wt% TiC composites: effects of adding a low-temperature hold prior to sintering at high temperatures. Ceram. Int. 44, 23297–23300 (2018)

    CAS  Google Scholar 

  87. Z. Ahmadi, B. Nayebi, M.S. Asl, I. Farahbakhsh, Z. Balak, Densification improvement of spark plasma sintered TiB2-based composites with micron-, submicron-and nano-sized SiC particulates. Ceram. Int. 44, 11431–11437 (2018)

    CAS  Google Scholar 

  88. K. Farhadi, A.S. Namini, M.S. Asl, A. Mohammadzadeh, M.G. Kakroudi, Characterization of hot-pressed SiC whisker reinforced TiB2 based composites. Int. J. Refract. Met. Hard Mater. 61, 84–90 (2016)

    CAS  Google Scholar 

  89. M.S. Asl, A.S. Namini, M.G. Kakroudi, Influence of silicon carbide addition on the microstructural development of hot pressed zirconium and titanium diborides. Ceram. Int. 42, 5375–5381 (2016)

    Google Scholar 

  90. D. Demirskyi, Y. Sakka, High-temperature reaction consolidation of TaC–TiB2 ceramic composites by spark-plasma sintering. J. Eur. Ceram. Soc. 35, 405–410 (2015)

    CAS  Google Scholar 

  91. L. Liu, L. Zhong, B. Zhang, Z. Lai, F. Ye, Z. Zhang et al., Densification of tantalum carbide ceramics with 5 mol.% Al, Cu, Ag and Au. Scr. Mater. 69, 574–577 (2013)

    CAS  Google Scholar 

  92. I. Bogomol, H. Borodianska, T. Zhao, T. Nishimura, Y. Sakka, P. Loboda et al., A dense and tough (B4C–TiB2)–B4C ‘composite within a composite’ produced by spark plasma sintering. Scr. Mater. 71, 17–20 (2014)

    CAS  Google Scholar 

  93. I. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, P. Loboda, Microstructure and high-temperature strength of B4C–TiB2 composite prepared by a crucibleless zone melting method. J. Alloy. Compd. 485, 677–681 (2009)

    CAS  Google Scholar 

  94. T.S.R.C. Murthy, C. Subramanian, R.K. Fotedar, M.R. Gonal, P. Sengupta, S. Kumar et al., Preparation and property evaluation of TiB2 + TiSi2 composite. Int. J. Refract. Met. Hard Mater. 27, 629–636 (2009)

    CAS  Google Scholar 

  95. Z. Ahmadi, Z. Hamidzadeh Mahaseni, M. Dashti Germi, M. Shahedi Asl, Microstructure of spark plasma sintered TiB2 and TiB2–AlN ceramics. Adv. Ceram. Prog. 5, 36–40 (2019)

    Google Scholar 

  96. L.-H. Li, H.-E. Kim, E.S. Kang, Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid. J. Eur. Ceram. Soc. 22, 973–977 (2002)

    CAS  Google Scholar 

  97. H.J. Kim, H.J. Choi, J.G. Lee, Mechanochemical synthesis and pressureless sintering of TiB2–AlN composites. J. Am. Ceram. Soc. 85, 1022–1024 (2002)

    CAS  Google Scholar 

  98. X.M. Yue, G.J. Zhang, Y.M. Wang, Reaction synthesis and mechanical properties of TiB2–AlN–SiC composites. J. Eur. Ceram. Soc. 19, 293–298 (1999)

    CAS  Google Scholar 

  99. Z.H. Mahaseni, M.D. Germi, Z. Ahmadi, M.S. Asl, Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition. Ceram. Int. 44, 13367–13372 (2018)

    Google Scholar 

  100. J.H. Park, Y.H. Koh, H.E. Kim, C.S. Hwang, E.S. Kang, Densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid. J. Am. Ceram. Soc. 82, 3037–3042 (1999)

    CAS  Google Scholar 

  101. F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M.S. Asl, Influence of TiN dopant on the microstructure of TiB2 ceramic sintered by spark plasma. Ceram. Int. 45, 5306–5311 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Oguntuyi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguntuyi, S.D., Johnson, O.T. & Shongwe, M.B. Spark Plasma Sintering of Ceramic Matrix Composite of ZrB2 and TiB2: Microstructure, Densification, and Mechanical Properties—A Review. Met. Mater. Int. 27, 2146–2159 (2021). https://doi.org/10.1007/s12540-020-00874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00874-8

Keywords

Navigation