Skip to main content

Evaluation of Macroalgal Biomass for Removal of Hazardous Organic Dyes from Wastewater

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

Dyes are defined as toxic, mutagenic, and dangerous pollutants to aquatic living organisms. Many adverse effects of these organic molecules on the environment such as decrease light penetration and photosynthesis which causes problems to aquatic groups, and which affect as well human health, because he is the first consumer of marine wealth, have led the researchers around the world to reduce this pollution. The wastewater must be treated carefully before discharge into main streams. Thus, great attention has been paid for many decades to the removal of dyes from industrial wastewater. Macroalgae also known as seaweeds belong to one of several groups of multicellular algae: brown, red, and green algae. This biomass can be used as dead material (adsorption) and even as living material (absorption) to remove various textile dyes. Hence, macroalgae are low-cost, non-toxic, and easily available biomaterials for the treatment of colored effluents. Adsorption of industrial dyes using marine macroalgae biomass can be an effective process and alternative to conventional methods. Macroalgal biomass is one of the most promising types of bio-adsorbents due to its rigid macrostructure, high uptake capacity, and immediate abundance. Some macroalgae have different affinities, depending on the chemical structure of each macroalga. In view of the pollution by organic pollutants and the possibility of using marine macro-algae, the present chapter was initiated to evaluate the adsorbent capacities of several macro-algae for the removal of industrial dyes in an aqueous solution. We highlight in this chapter (1) an overview on the chemical and structural properties of textile dyes, (2) toxicity and pollution of textile dyes, (3) the available technologies for hazardous organic dyes removal, (4) physicochemical parameters affecting adsorption of hazardous organic dyes, and (5) the current knowledge on the potential of using adsorbents prepared from macroalgae for the removal of dyes from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abidar F, Morghi M, Sinan F, Chiban M, Eddaoudi H, Zebret M (2016) Orthophosphate ion adsorption onto raw shrimp shells Revue des sciences de l’eau. J Water Sci 29(3):197–211. https://doi.org/10.7202/1038924ar

    Article  CAS  Google Scholar 

  2. Ahmad MA, Afandi NS, Bello OS (2017) Optimization of process variables by response surface methodology for malachite green dye removal using lime peel activated carbon. Appl Water Sci 7(2):717–727. https://doi.org/10.1007/s13201-015-0284-0

    Article  CAS  Google Scholar 

  3. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv 5(39):30801–30818

    Google Scholar 

  4. Al-Ghouti MA, Abuqaoud RH, Abu-Dieyeh MH (2016) Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains. Waste manag 49: 238–244

    Google Scholar 

  5. Alkan M, Çelikçapa S, Demirbaş Ö, Doğan M (2005) Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes Pigm 65(3):251–259. https://doi.org/10.1016/j.dyepig.2004.07.018

    Article  CAS  Google Scholar 

  6. Angelova R, Baldikova E, Pospiskova K, Maderova Z, Safarikova M, Safarik I (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod 137:189–194. https://doi.org/10.1016/j.jclepro.2016.07.068

    Article  CAS  Google Scholar 

  7. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. J Colloid Interf Sci 288(2):371–376. https://doi.org/10.1016/j.jcis.2005.03.020

    Article  CAS  Google Scholar 

  8. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135(1–3):171–179. https://doi.org/10.1016/j.jhazmat.2005.11.044

    Article  CAS  Google Scholar 

  9. Aravindhan R, Rao JR, Nair BU (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142(1–2):68–76. https://doi.org/10.1016/j.jhazmat.2006.07.058

    Article  CAS  Google Scholar 

  10. Aziam R, Chiban M, Eddaoudi H, Soudani A, Zerbet M, Sinan F (2017) Kinetic modeling, equilibrium isotherm and thermodynamic studies on a batch adsorption of anionic dye onto eco-friendly dried Carpobrotus edulis plant. Eur Phys J Spec Topics 226(5):977–992

    Article  CAS  Google Scholar 

  11. Aziam R, Chiban M, Eddaoudi E, Soudani A, Zerbet M, Sinan F (2016) Factors controlling the adsorption of acid blue 113 dye from aqueous solution by dried C. Edulis plant as natural adsorbent. Arabian J Geosci 9(15):659. https://doi.org/10.1007/s12517-016-2675-4

  12. Bello OS, Adeogun IA, Ajaelu JC, Fehintola EO (2008) Adsorption of methylene blue onto activated carbon derived from periwinkle shells: kinetics and equilibrium studies. Chem Ecol 24(4):285–295

    Article  CAS  Google Scholar 

  13. Bello OS, Ahmad MA, Ahmad N (2012) Adsorptive features of banana (Musa paradisiaca) stalk-based activated carbon for malachite green dye removal. Chem Ecol 28(2):153–167

    Article  CAS  Google Scholar 

  14. Bello OS, Banjo S (2012) Equilibrium, kinetic, and quantum chemical studies on the adsorption of Congo red using Imperata cylindrica leaf powder activated carbon. Toxicol Environ Chem 94(6):1114–1124

    Article  CAS  Google Scholar 

  15. Bello OS, Bello OU, Lateef IO (2014) Adsorption characteristics of mango leaf (mangifera indica) powder as adsorbent for malachite green dye removal from aqueous solution. Coven J Phys Life Sci 2(1)

    Google Scholar 

  16. Benhima H, Chiban M, Sinan F, Seta P, Persin M (2008) Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants. Colloids Surf B 61(1):10–16

    Article  CAS  Google Scholar 

  17. Bharathi KS, Ramesh ST (2013) Removal of dyes using agricultural waste as low-cost adsorbents: a review. Appl Water Sci 3(4):773–790

    Article  Google Scholar 

  18. Çelekli A, Yavuzatmaca M, Bozkurt H (2009) Kinetic and equilibrium studies on the adsorption of reactive red 120 from aqueous solution on Spirogyra majuscula. Chem Eng Sci 152(1):139–145

    Google Scholar 

  19. Çelekli A, Geyik F (2011) Artificial neural networks (ANN) approach for modeling of removal of Lanaset Red G on Chara contraria. Bioresour Technol 102(10):5634–5638

    Google Scholar 

  20. Çelekli A, İlgün G, Bozkurt H (2012) Sorption equilibrium, kinetic, thermodynamic, and desorption studies of Reactive Red 120 on Chara contraria. Chem Eng Sci 191:228-235

    Google Scholar 

  21. Chang H, Li T, Liu B, Vidic RD, Elimelech M, Crittenden JC (2019) Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: a review. Desalination 455:34–57

    Article  CAS  Google Scholar 

  22. Chen JP, Hong L, Wu S, Wang L (2002) Elucidation of interactions between metal ions and Ca alginate-based ion-exchange resin by spectroscopic analysis and modeling simulation. Langmuir 18(24):9413–9421

    Article  CAS  Google Scholar 

  23. Chiban M, Soudani A, Sinan F, Tahrouch S, Persin M (2011) Characterization and application of dried plants to remove heavy metals, nitrate, and phosphate ions from industrial wastewaters. Clean Soil Air Water 39(4):376–383

    Article  CAS  Google Scholar 

  24. Chiban M, Benhima H, Sinan F, Heddaoudi H, Seta P, Persin M (2006) Acte de Congrès: Etude des propriétés adsorbantes de biomatériaux inertes solides utilisables comme membrane filtre pour l’élimination des ions métalliques et minéraux

    Google Scholar 

  25. Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin-Crini N (2019) Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett 17(4):1645–1666. https://doi.org/10.1007/s10311-019-00903-y

    Article  CAS  Google Scholar 

  26. Cui ZF, Jiang Y, Field RW (2010) Fundamentals of pressure-driven membrane separation processes. Membr Technol 1. https://doi.org/10.1039/C4RA16959J

  27. Das A, Pal A, Saha S, Maji SK (2009) Behaviour of fixed-bed column for the adsorption of malachite green on surfactant-modified alumina. J Environ Sci Health Part A 44(3):265–272

    Article  CAS  Google Scholar 

  28. Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167(1-3):1–9

    Google Scholar 

  29. El Jamal MM, Ncibi MC (2012) Biosorption of methylene blue by chaetophora elegans algae: Kinetics, equilibrium and thermodynamic studies. Acta Chim. Slov, 59(1):24–31

    Google Scholar 

  30. Fleischmann C, Lievenbrück M, Ritter H (2015) Polymers and dyes: developments and applications. Polymers 7(4):717–746

    Google Scholar 

  31. Flores-Chaparro CE, Ruiz LFC, de la Torre MCA, Huerta-Diaz MA, Rangel-Mendez JR (2017) Biosorption removal of benzene and toluene by three dried macroalgae at different ionic strength and temperatures: Algae biochemical composition and kinetics. J Environ Manag 193:126–135

    Article  CAS  Google Scholar 

  32. Ghaedi M, Khajehsharifi H, Yadkuri AH, Roosta M, Asghari A (2012) Oxidized multiwalled carbon nanotubes as efficient adsorbent for bromothymol blue. Toxicol Environ Chem 94(5):873–883

    Article  CAS  Google Scholar 

  33. Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151(1):203–210

    Article  CAS  Google Scholar 

  34. Guler UA, Ersan M, Tuncel E, Dügenci F (2016) Mono and simultaneous removal of crystal violet and safranin dyes from aqueous solutions by HDTMA-modified Spirulina sp. Process Saf Environ Prot 99:194–206

    Article  CAS  Google Scholar 

  35. Gupta VK, Bhushan R, Nayak A, Singh P, Bhushan B (2014) Biosorption and reuse potential of a blue green alga for the removal of hazardous reactive dyes from aqueous solutions. Bioremed J 18(3):179–191

    Article  CAS  Google Scholar 

  36. Gupta VK, Jain R, Varshney S (2007) Removal of Reactofix golden yellow 3 RFN from aqueous solution using wheat husk—an agricultural waste. J Hazard Mater 142(1–2):443–448

    Article  CAS  Google Scholar 

  37. Gupta VK, Kumar R, Nayak A, Saleh TA, Barakat MA (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv Coll Interf Sci 193:24–34

    Article  CAS  Google Scholar 

  38. Gupta VK, Khamparia S, Tyagi I, Jaspal D, Malviya A (2015) Decolorization of mixture of dyes: a critical review. Global J Environ Sci Manag 71–94

    Google Scholar 

  39. Hammud HH, Fayoumi L, Holail H, Mostafa ESM (2011) Biosorption studies of methylene blue by Mediterranean algae Carolina and its chemically modified forms. Linear and nonlinear models’ prediction based on statistical error calculation. Int J Chem 3(4):147

    Google Scholar 

  40. Hariyanti F, Rinawati R (2019) Magnetized algae-silica hybrid from Porphyridium sp. biomass with Fe3O4 particle and its application as adsorbent for the removal of methylene blue from aqueous solution. Desal Water Treat 142(1):331–340

    Google Scholar 

  41. He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Biores Technol 160:67–78

    Article  CAS  Google Scholar 

  42. Jin X, Yu C, Li Y, Qi Y, Yang L, Zhao G, Hu H (2011) Preparation of novel nano-adsorbent based on organic–inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment. J Hazard Mater 186(2–3):1672–1680

    Article  CAS  Google Scholar 

  43. Kayan A, Arican MO, Boz Y, Ay U, Bozbas SK (2014) Novel tyrosine-containing inorganic–organic hybrid adsorbent in removal of heavy metal ions. J Environ Chem Eng 2(2):935–942

    Article  CAS  Google Scholar 

  44. Khataee AR, Vafaei F, Jannatkhah M (2013) Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int Biodet Biodegr 83:33–40

    Article  CAS  Google Scholar 

  45. Khayet M, Zahrim AY, Hilal N (2011) Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem Eng J 167(1):77–83

    Article  CAS  Google Scholar 

  46. Khouni I, Marrot B, Moulin P, Amar RB (2011) Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination 268(1–3):27–37

    Article  CAS  Google Scholar 

  47. Kornaros M, Lyberatos G (2006) Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J Hazard Mater 136(1):95–102

    Article  CAS  Google Scholar 

  48. Lee KE, Morad N, Teng TT, Poh BT (2012) Preparation, characterization and application of Mg (OH) 2-PAM inorganic-organic composite polymer in removing reactive dye. Iranian J Energy Environ 3(5)

    Google Scholar 

  49. Mahamadi C, Mawere E (2014) High adsorption of dyes by water hyacinth fixed on alginate. Environ Chem Lett 12:313–320. https://doi.org/10.1007/s10311-013-0445-z

    Article  CAS  Google Scholar 

  50. Mansour H, Boughzala O, Barillier D, Chekir-Ghedira L, Mosrati R (2011) Les colorants textiles sources de contamination de l’eau: CRIBLAGE de la toxicité et des méthodes de traitement Revue des sciences de l’eau. J Water Sci 24(3):209–238

    Google Scholar 

  51. Mashkoor F, Nasar A (2020) Inamuddin carbon nanotube-based adsorbents for the removal of dyes from waters: a review. Environ Chem Lett 18:605–629. https://doi.org/10.1007/s10311-020-00970-6

  52. Mia R, Selim M, Shamim AM, Chowdhury M, Sultana S (2019) Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J Textile Eng Fashion Technol 5(4):220–226

    Article  Google Scholar 

  53. Moghaddam SS, Moghaddam MA, Arami M (2011) Response surface optimization of acid red 119 dye from simulated wastewater using Al based waterworks sludge and polyaluminium chloride as coagulant. J Environ Manag 92(4):1284–1291

    Article  CAS  Google Scholar 

  54. Moghazy RM, Labena A, Husien S (2019) Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): Full factorial design, equilibrium, and kinetic studies. Int J Biol Macromol 134:330–343

    Article  CAS  Google Scholar 

  55. Mohan SV, Ramanaiah SV, Sarma PN (2008) Biosorption of direct azo dye from aqueous phase onto Spirogyra sp. I02: Evaluation of kinetics and mechanistic aspects. Biochem Eng J 38(1):61–69

    Google Scholar 

  56. Ncibi MC, Mahjoub B, Seffen M (2007) Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. J Hazard Mater 139(2): 280–285

    Google Scholar 

  57. Ojedokun AT, Bello OS (2017) Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl Water Sci 7(4):1965–1977

    Article  CAS  Google Scholar 

  58. Oladoja NA, Raji IO, Olaseni SE, Onimisi TD (2011) In situ hybridization of waste dyes into growing particles of calcium derivatives synthesized from a Gastropod shell (Achatina achatina). Chem Eng J 171(3):941–950

    Article  CAS  Google Scholar 

  59. Omar H, El-Gendy A, Al-Ahmary K (2018) Bioremoval of toxic dye by using different marine macroalgae Turkish. J Botany 42(1):15–27

    CAS  Google Scholar 

  60. Padaki M, Murali RS, Abdullah MS, Misdan N, Moslehyani A, Kassim MA, Hilal N, Ismail AF (2015) Membrane technology enhancement in oil–water separation: a review. Desalination 357:197–207

    Article  CAS  Google Scholar 

  61. Parvin S, Biswas BK, Rahman MA, Rahman MH, Anik MS, Uddin MR (2019) Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere 236:

    Article  CAS  Google Scholar 

  62. Piccin J S, Gomes CS, Mella B, Gutterres M (2016) Color removal from real leather dyeing effluent using tannery waste as an adsorbent. J Environ Chem Eng 4(1): 1061–1067

    Google Scholar 

  63. Romera E, González F, Ballester A, Blázquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Biores Technol 98(17):3344–3353

    Article  CAS  Google Scholar 

  64. Rubin E, Rodriguez P, Herrero R, Cremades J, Barbara I, Sastre de Vicente ME (2005) Removal of methylene blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 80(3):291–298

    CAS  Google Scholar 

  65. Rubin E, Rodriguez P, Herrero R., Sastre de Vicente M E (2010) Adsorption of methylene blue on chemically modified algal biomass: Equilibrium, dynamic, and surface data. J Chem Eng Data 55(12): 5707-5714.

    Google Scholar 

  66. Sarwa P, Verma SK (2013) Decolourization of orange G Dye by microalgae acutodesmus obliquues strain PSV2 isolated from textile industrial site. Int J Appl Sci Biotechnol 1(4):247–252

    Article  CAS  Google Scholar 

  67. Satria H (2011) Hybridization of nannochloropsis sp biomass-silica through sol-gel process to adsorb Cd (II) ion in aqueous solutions. Eur J Sci Res 51(4):467–476

    Google Scholar 

  68. Sayadi MH, Salmani N, Heidari A, Rezaei MR (2018) Bio-synthesis of palladium nanoparticle using Spirulina platensis alga extract and its application as adsorbent. Surf Interf 10:136–143

    Article  CAS  Google Scholar 

  69. Shabandokht M, Binaeian E, Tayebi H A (2016) Adsorption of food dye Acid red 18 onto polyaniline-modified rice husk composite: isotherm and kinetic analysis. Desalination Water Treat 57(57): 27638–27650

    Google Scholar 

  70. Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interf Sci 275(1):131–141

    Article  CAS  Google Scholar 

  71. Soudani A, Chiban M, Zerbet M, Eddaoudi H, Sinan F, Tahrouch S, Persin M (2009) Mineral ions adsorption onto inert solid biomaterials of vegetal origin: Study extended to the strong limiting concentrations leading to the total saturation of adsorbent. Current Focus Colloids Surf Transworld Res Netw 37(661):209–225

    Google Scholar 

  72. Varghese AG, Paul SA, Latha MS (2019) Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ Chem Lett 17:867–877. https://doi.org/10.1007/s10311-018-00843-z

    Article  CAS  Google Scholar 

  73. Vilar VJ, Botelho CM, Boaventura RA (2007) Methylene blue adsorption by algal biomass based materials: biosorbents characterization and process behaviour. J Hazard Mater 147(1–2):120–132

    Article  CAS  Google Scholar 

  74. Wan Z, Jiao Y, Ouyang X, Chang L, Wang X (2017) Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil–water separation and water-soluble dye removal. Appl Mater Today 9:551–559. https://doi.org/10.1016/j.apmt.2017.09.013

    Article  Google Scholar 

  75. Wang Y, Pan Y, Zhu T, Wang A, Lu Y, Lv L, Li Z (2018) Enhanced performance and microbial community analysis of bioelectrochemical system integrated with bio-contact oxidation reactor for treatment of wastewater containing azo dye. Sci Total Environ 634:616–627. https://doi.org/10.1016/j.scitotenv.2018.03.346

    Article  CAS  Google Scholar 

  76. Waranusantigul P, Pokethitiyook P, Kruatrachue M, Upatham ES (2003) Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza). Environ Pollut 125(3):385–392. https://doi.org/10.1016/S0269-7491(03)00107-6

    Article  CAS  Google Scholar 

  77. Wijayanti TA (2020). Application of modified green algae nannochloropsis sp. as adsorbent in the sequential adsorption of methylene blue and Cu (II) cations in solution

    Google Scholar 

  78. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Coll Interf Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  Google Scholar 

  79. Yang E, Chae KJ, Choi MJ, He Z, Kim IS (2019) Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. Desalination 452:40–67. https://doi.org/10.1016/j.desal.2018.11.007

    Article  CAS  Google Scholar 

  80. Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Biores Technol 199:311–318. https://doi.org/10.1016/j.biortech.2015.08.001

    Article  CAS  Google Scholar 

  81. Zhang G, Li X, Li Y, Wu T, Sun D, Lu F (2011) Removal of anionic dyes from aqueous solution by leaching solutions of white mud. Desalination 274(1–3):255–261. https://doi.org/10.1016/j.desal.2011.02.016

    Article  CAS  Google Scholar 

  82. Zhang Y, Wang L, Sun W, Hu Y, Tang H (2020) Membrane technologies for Li +/Mg2 + separation from salt-lake brines and seawater: A comprehensive review. J Ind Eng Chem 81:7–23. https://doi.org/10.1016/j.jiec.2019.09.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziam, R. et al. (2021). Evaluation of Macroalgal Biomass for Removal of Hazardous Organic Dyes from Wastewater. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_7

Download citation

Publish with us

Policies and ethics