Skip to main content

Degradation of Dyes by Electrochemical Advanced Oxidation Processes

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

The threat of organic dye-rich wastewaters on the environment and health has risen as a major problem. The situation is becoming worsened as legislation on dye effluent discharge is more and more rigorous. Over the last three decades, many efforts have been intensified to the implementation of EAOPs as effective technologies for recalcitrant dye pollutants. It was found that the main factors governing these processes are electrode material, current intensity, initial pH and dye structure. Heterogeneous AO was found very sensitive to anode material. The best performance was achieved by costly BDD anodes. Homogenous processes were observed to be very efficient in decolorization. The oxidizing ability was in the following order AO–H2O2 < EF < PEF < SPEF. Combining EAOPs with similar processes or other technologies significantly improves mineralization. Adopting PV panels as energy source shows to be a promising option to reduce drawbacks related to EAOPs high costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACF:

Activated carbon fiber

AO:

Anodic oxidation

AO–H2O2:

Anodic oxidation with electrogenerated H2O2

AOP:

Advanced oxidation process

BDD:

Boron-doped diamond

BEF:

Bioelectro-Fenton

CB:

Conductive band

COD:

Chemical oxygen demand

CPC:

Compound parabolic collector 

CV:

Crystal violet; compound parabolic collector

DOC:

Dissolved organic carbon

DSA:

Dimensionally stable anode

EAOP:

Electrochemical advanced oxidation process

EF:

Electro-Fenton

FCF:

Fast green

GC:

gas chromatography

M:

Anode surface

MCE:

Mineralization current efficiency

MEC:

Microbial electrolysis cells

MeG:

Methyl green

MFC:

Microbial fuel cell

MG:

Malachite green

MS:

Mass spectrometry

OER:

Oxygen evolution reaction

PC:

Peroxi-coagulation

PEC:

Photoelectrocatalysis

PEF:

Photoelectro-Fenton

POP:

Persistent organic pollutant

PTFE:

Polytetrafluoroethylene

PV:

Photovoltaic

ROS:

Reactive oxygen species

RVC:

Reticulated vitreous carbon

SEF:

Sonoelectro-Fenton

SHE:

Standard hydrogen electrode

SPEF:

Solar photoelectro-Fenton

SS:

Stainless steel

TCE:

Total current efficiency

TOC:

Total organic carbon

UHPLC:

Ultra-high performance liquid chromatography

US:

Ultrasound

UV:

Ultraviolet

UVA:

Ultraviolet A (315–400 nm)

UVB:

Ultraviolet B (280–315 nm)

UVC:

Ultraviolet C

VB:

Valence band

E:

Electrode potential (V)

E°:

Standard redox potential (V/SHE)

eV:

Electron-Volt

:

Light radiation 

I:

Current intensity (mA)

j:

Current density (mA cm2)

T:

Temperature (℃)

V:

Volume (L)

•OH:

Hydroxyl radical

CNT:

Carbon nanotubes

TPM:

Triphenylmethane

References

  1. Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow-a review. Environ Sci Pollut Res 21:8336–8367

    Article  CAS  Google Scholar 

  2. Garcia-Segura S, Ocon JD, Nan Chong M (2018) Electrochemical oxidation remediation of real wastewater effluents-a review. Process Saf Environ 113:48–67

    Google Scholar 

  3. Nidheesh P, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227

    Article  CAS  Google Scholar 

  4. Barrera-Díaz C, Cañizares P, Fernández FJ, Natividad R, Rodrigo MA (2014) Electrochemical advanced oxidation processes-an overview of the current applications to actual industrial effluents. J Mex Chem Soc 58:256–275

    Google Scholar 

  5. Kapałka A, Fóti G, Comninellis C (2008) Kinetic modeling of the electrochemical mineralization of organic pollutants for wastewater treatment. J Appl Electrochem 38:7–16

    Article  CAS  Google Scholar 

  6. da Costa Soares IC, da Silva ÁRL, de Moura Santos ECM, dos Santos EV, da Silva DR, Martínez-Huitle CA (2020) Understanding the electrochemical oxidation of dyes on platinum and boron–doped diamond electrode surfaces: experimental and computational study. J Solid State Electr 24:3245–3256s

    Google Scholar 

  7. Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  8. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods-an updated review. Appl Catal B Environ 166–167:603–643

    Article  CAS  Google Scholar 

  9. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261

    Article  CAS  Google Scholar 

  10. He Y, Lin H, Guo Z, Zhang W, Li H, Huang W (2019) Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Sep Purif Technol 212:802–821

    Article  CAS  Google Scholar 

  11. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  12. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  13. Aoudj S, Drouiche N, Khelifa A (2019) Emerging contaminants remediation by heterogeneous photocatalysis, Book Chapter 9. In: Emerging and nanomaterial contaminants in wastewater, advanced treatment technologies. Elsevier Inc., pp 245–275

    Google Scholar 

  14. Orimolade BO, Arotiba OA (2020) Bismuth vanadate in photoelectrocatalytic water treatment systems for the degradation of organics: a review on recent trends. J Electroanal Chem 878:114724

    Google Scholar 

  15. Daghrir R, Drogui P, Robert D (2012) Photoelectrocatalytic technologies for environmental applications. J Photoch Photobio A 238:41–52

    Article  CAS  Google Scholar 

  16. Qiu S, He D, Ma J, Liu T, Waite TD (2015) Kinetic modeling of the electro-Fenton process: quantification of reactive oxygen species generation. Electrochim Acta 176:51–58

    Article  CAS  Google Scholar 

  17. Ghime D, Ghosh P (2019) Removal of organic compounds found in the wastewater through electrochemical advanced oxidation processes: a review. Russ J Electrochem 55:591–620

    Article  CAS  Google Scholar 

  18. Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E (2015) Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes. J Hazard Mater 290:34–42

    Article  CAS  Google Scholar 

  19. Nidheesh PV, Gandhimath R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15

    Article  CAS  Google Scholar 

  20. Zhao Z, Dong W, Wang H, Chen G, Tang J, Wu Y (2018) Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes. J Hazard Mater 350:128–135

    Article  CAS  Google Scholar 

  21. Oturan MA, Brillas E (2007) Electrochemical advanced oxidation processes (EAOPs) for environmental applications. Port Electrochimica Acta 25:1–18

    Article  CAS  Google Scholar 

  22. Kubo D, Kawase Y (2018) Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode. J Clean Prod 203:685–695

    Article  CAS  Google Scholar 

  23. Brillas E, Sauleda R, Casado J (1997) Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode. J Electrochem Soc 144:2374–2379

    Article  CAS  Google Scholar 

  24. Aoudj S, Khelifa A, Zemmouri H, Hamadas I, Yatoui S, Zabchi N, Drouiche N (2018) Degradation of EDTA in H2O2-containing wastewater by photo-electrochemical peroxidation. Chemosphere 208:984–990

    Article  CAS  Google Scholar 

  25. Rondán V, Ramírez B, Silva-Martínez S, Hernández JA, Tiwari MK, Alvarez-Gallegos A (2020) High removal efficiency of dye pollutants by anodic Fenton treatment. Int J Electrochem Sci 15:52–67

    Article  CAS  Google Scholar 

  26. Wang Q, Lemley AT (2002) Oxidation of diazinon by anodic Fenton treatment. Water Res 36:3237–3244s

    Google Scholar 

  27. Brillas E (2014) A review on the degradation of organic pollutants in waters by UV photoelectro-Fenton and solar photoelectro-Fenton. J Braz Chem Soc 25:393–417

    CAS  Google Scholar 

  28. Brillas E (2020) A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies. Chemosphere 250:126–198

    Google Scholar 

  29. Flox C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2007) Solar photoelectro-Fenton degradation of cresols using a flow reactor with a boron-doped diamond anode. Appl Catal B Environ 75:17–28

    Article  CAS  Google Scholar 

  30. Oturan MA, Sires I, Oturan N, Pérocheau S, Laborde J-L, Trévin S (2008) Sonoelectro-Fenton proces: a novel hybrid technique for the destruction of organic pollutants in water. J Electroanal Chem 624:329–332

    Article  CAS  Google Scholar 

  31. Chakma S, Moholkar VS (2013) Physical mechanism of sono-Fenton process. AIChE J 59:4303–4313

    Article  CAS  Google Scholar 

  32. Suslick KS (1989) The chemical effects of ultrasound. Sci Am 260:80–87

    Article  CAS  Google Scholar 

  33. Garbellini GS, Salazar-Banda GR, Avaca LA (2008) Ultrasound applications in electrochemical systems: theoretical and experimental aspects. Quim Nova 31:123–133

    Google Scholar 

  34. Pradhan AA, Gogate PR (2010) Degradation of p-nitrophenol using acoustic cavitation and Fenton chemistry. J Hazard Mater 173:517–522

    Article  CAS  Google Scholar 

  35. Zhu X, Ni J (2009) Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem Commun 11:274–277

    Article  CAS  Google Scholar 

  36. Li X, Chen S, Angelidaki I, Zhang Y (2018) Bio-electro-Fenton processes for wastewater treatment: advances and prospects. Chem Eng J 354:492–506

    Article  CAS  Google Scholar 

  37. Kahoush M, Behary N, Cayla A, Nierstrasz V (2018) Bio-Fenton and Bio-electro-Fenton as sustainable methods for degrading organic pollutants in wastewater. Process Biochem 64:237–247

    Article  CAS  Google Scholar 

  38. Zou R, Angelidaki I, Jin B, Zhang Y (2020) Feasibility and applicability of the scaling-up of bio-electro-Fenton system for textile wastewater treatment. Environ Int 134:105352

    Google Scholar 

  39. Weng M, Zhou Z, Zhang Q (2013) Electrochemical degradation of typical dyeing wastewater in aqueous solution: performance and mechanism. Int J Electrochem Sci 8:290–296

    CAS  Google Scholar 

  40. de Oliveira GR, Fernandes NS, de Melo JV, da Silva DR, Urgeghe C, Martinez-Huitle CA (2011) Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chem Eng J 168:208–214

    Article  CAS  Google Scholar 

  41. Peralta-Hernandez JM, Mendez-Tovar M, Guerra-Sanchez R, Martinez-Huitle CA, Nava JL (2012) A brief review on environmental application of boron doped diamond electrodes as a new way for electrochemical incineration of synthetic dyes. Int J Electrochem 2012:1–18

    Article  CAS  Google Scholar 

  42. Martínez-Huitle CA, dos Santos EV, de Araújo DM, Panizza M (2012) Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J Electroanal Chem 674:103–107

    Google Scholar 

  43. Faouzi AM, Nasr B, Abdellatif G (2007) Electrochemical degradation of anthraquinone dye Alizarin Red S by anodic oxidation on boron-doped diamond. Dyes Pigments 73:86–89

    Article  CAS  Google Scholar 

  44. Panizza M, Barbucci A, Ricotti R, Cerisola G (2007) Electrochemical degradation of methylene blue. Sep Purif Technol 54:382–387

    Google Scholar 

  45. Palma-Goyes RE, Guzmán-Duque FL, Penuela G, González I, Nava JL, Torres-Palma RA (2010) Electrochemical degradation of crystal violet with BDD electrodes: effect of electrochemical parameters and identification of organic by-products. Chemosphere 81:26–32

    Article  CAS  Google Scholar 

  46. Martinez-Huitle CA, dos Santos EV, Medeiros de Araujo D, Panizza M (2012) Applicability of diamond electrode/anode to the electrochemical treatment of a real textile effluent. J Electroanal Chem 674:103–107

    Article  CAS  Google Scholar 

  47. Osugi ME, Zanoni MVB, Chenthamarakshan CR, de Tacconi NR, Woldemariam GA, Mandal SS, Rajeshwar K (2008) Toxicity assessment and degradation of disperse azo dyes by photoelectrocatalytic oxidation on Ti/TiO2 nanotubular array electrodes. J Adv Oxid Technol 11:425–434

    CAS  Google Scholar 

  48. Zhang A, Zhou M, Liu L, Wang W, Jiao Y, Zhou Q (2010) A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode. Electrochim Acta 55:5091–5099

    Article  CAS  Google Scholar 

  49. Olvera-Vargas H, Oturan N, Aravindakumar CT, Sunil Paul MM, Sharma VK, Oturan MA (2014) Electro-oxidation of the dye azure B: kinetics, mechanism, and by-products. Environ Sci Pollut Res 21:8379–8386

    Google Scholar 

  50. Lahkimi A, Oturan MA, Oturan N, Chaouch M (2007) Removal of textile dyes from water by the electro-Fenton process. Environ Chem Lett 5:35–39

    Article  CAS  Google Scholar 

  51. Yu FK, Zhou MH, Yu XM (2015) Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim Acta 163:182–189

    Article  CAS  Google Scholar 

  52. Lei Y, Liu H, Shen Z, Wang W (2013) Development of a trickle bed reactor of electro-Fenton process for wastewater treatment. J Hazard Mater 261:570–576

    Article  CAS  Google Scholar 

  53. Almeida LC, Garcia-Segura S, Arias C, Bocchi N, Brillas E (2012) Electrochemical mineralization of the azo dye Acid Red 29 (Chromotrope 2R) by photoelectro-Fenton process. Chemosphere 89:751–758

    Article  CAS  Google Scholar 

  54. Feng C-H, Li F-B, Mai H-J, Li X-Z (2010) Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment. Environ Sci Technol 44:1875–1880

    Article  CAS  Google Scholar 

  55. Fernández de Dios MÁ, González del Campo A, Fernández FJ, Rodrigo M, Pazos M, Sanromán MÁ (2013) Bacterial-fungal interactions enhance power generation in microbial fuel cells and drive dye decolourisation by an ex situ and in situ electro-Fenton process. Bioresource Technol 148C:39–46

    Article  CAS  Google Scholar 

  56. Zhang Y, Wang Y, Angelidaki I (2015) Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in Bioelectro-Fenton system. J Power Sources 291:108–116

    Article  CAS  Google Scholar 

  57. Zarei M, Niaei A, Salari D, Khataee A (2010) Removal of four dyes from aqueous medium by the peroxi-coagulation method using carbon nanotube PTFE cathode and neural network modeling. J Electroanal Chem 639:167–174

    Article  CAS  Google Scholar 

  58. Salari D, Niaei A, Khataee A, Zarei M (2009) Electrochemical treatment of dye solution containing C.I. basic yellow 2 by the peroxi-coagulation method and modeling of experimental results by artificial neural networks. J Electroanal Chem 629:117–125

    Google Scholar 

  59. Eslami A, Moradi M, Ghanbari F, Mehdipour F (2013) Decolorization and COD removal from real textile wastewater by chemical and electrochemical Fenton processes: a comparative study. J Environ Health Sci Eng 11:31

    Article  CAS  Google Scholar 

  60. Khataee AR, Vahid B, Behjati B, Safarpour M, Joo SW (2014) Kinetic modeling of a triarylmethane dye decolorization by photoelectro-Fenton process in a recirculating system: nonlinear regression analysis. Chem Eng Res Des 92:362–367

    Article  CAS  Google Scholar 

  61. Li H, Lei H, Yu Q, Li Z, Feng X, Yang B (2010) Effect of low frequency ultrasonic irradiation on the sonoelectro-Fenton degradation of cationic red X-GRL. Chem Eng J 160(2010):417–422

    Article  CAS  Google Scholar 

  62. Martínez SS, Uribe EV (2012) Enhanced sonochemical degradation of azure B dye by the electroFenton process. Ultrason Sonochem 19:174–178

    Article  CAS  Google Scholar 

  63. Wang A, Qu J, Liu H, Ru J (2008) Mineralization of an azo dye Acid Red 14 by photoelectro-Fenton process using an activated carbon fiber cathode. Appl Catal B Environ 84:393–399

    Article  CAS  Google Scholar 

  64. Peralta-Hernández JM, Meas-Vong Y, Rodríguez FJ, Chapman TW, Maldonado MI, Godínez LA (2008) Comparison of hydrogen peroxide-based processes for treating dye-containing wastewater: decolorization and destruction of Orange II azo dye in dilute solution. Dyes Pigments 76:656–662

    Google Scholar 

  65. Diagne M, Sharma VK, Oturan N, Oturan MA (2014) Depollution of indigo dye by anodic oxidation and electro-Fenton using B-doped diamond anode. Environ Chem Lett 12:219–224

    Article  CAS  Google Scholar 

  66. Garcia-Segura S, El-Ghenymy A, Centellas F, Rodríguez RM, Arias C, Garrido JA, Cabot PL, Brillas E (2012) Comparative degradation of the diazo dye Direct Yellow 4 by electro-Fenton, photoelectro-Fenton and photo-assisted electro-Fenton. J Electroanal Chem 681:36–43

    Article  CAS  Google Scholar 

  67. El-Ghenymy A, Centellas F, Rodríguez RM, Cabot PL, Garrido JA, Sirés I, Brillas E (2015) Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye. Electrochim Acta 182:247–256

    Article  CAS  Google Scholar 

  68. Thiam A, Brillas E, Garrido JA, Rodríguez RM, Sirés I (2016) Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Appl Catal B 180:227–236

    Article  CAS  Google Scholar 

  69. Moreira FC, Garcia-Segura S, Vilar VJP, Boaventura RAR, Brillas E (2013) Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B 142–143:877–890

    Article  CAS  Google Scholar 

  70. Alcocer S, Picos A, Uribe AR, Perez T, Peralta-Hernandez JM (2018) Comparative study for degradation of industrial dyes by electrochemical advanced oxidation processes with BDD anode in a laboratory stirred tank reactor. Chemosphere 205:682–689

    Article  CAS  Google Scholar 

  71. Rocha JHB, Gomes MMS, Santos EVD, Moura ECMD, Silva DRD, Quiroz MA, Martínez-Huitle CA (2014) Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: direct and Indirect oxidation. Electrochim Acta 140:419–426

    Google Scholar 

  72. Hmani E, Samet Y, Abdelhédi R (2012) Electrochemical degradation of auramine-O dye at boron-doped diamond and lead dioxide electrodes. Diam Relat Mater 30:1–8

    Article  CAS  Google Scholar 

  73. Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X (2010) Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochim Acta 55:3606–3613

    Google Scholar 

  74. Liu CF, Huang CP, Hu CC, Huang C (2019) A dual TiO2/Ti-stainless steel anode for the degradation of Orange G in a coupling photoelectrochemical and photo-electro-Fenton system. Sci Total Environ 659:221–229

    Article  CAS  Google Scholar 

  75. Saez C, Panizza M, Rodrigo MA, Cerisola G (2007) Electrochemical incineration of dyes using a boron-doped diamond anode. J Chem Technol Biotechnol 82:575–581

    Article  CAS  Google Scholar 

  76. Sires I, Guivarch E, Oturan N, Oturan MA (2008) Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72:592–600

    Article  CAS  Google Scholar 

  77. da Costa Soares IC, da Silva DR, Oliveira do Nascimento JH, Garcia-Segura S, Martínez-Huitle CA (2017) Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies. Environ Sci Pollut R 24:24167–24176

    Google Scholar 

  78. Garcia-Segura S, Centellas F, Arias C, Garrido JA, Rodríguez RM, Cabot PL, Brillas E (2011) Comparative decolorization of monoazo, diazo and triazo dyes by electro-Fenton process. Electrochim Acta 58:303–311

    Article  CAS  Google Scholar 

  79. Aquino JM, Rodrigo MA, Rocha-Filho RC, Saez C, Canizares P (2012) Influence of the supporting electrolyte on the electrolyses of dyes with conductive diamond anodes. Chem Eng J 184:221–227

    Article  CAS  Google Scholar 

  80. Fan Y, Ai Z, Zhang L (2010) Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment. J Hazard Mater 176:678–684

    Article  CAS  Google Scholar 

  81. Thiam A, Sires I, Brillas E (2015) Treatment of a mixture of food color additives (E122, E124 and E129) in different water matrices by UVA and solar photoelectro-Fenton. Water Res 81:178–187

    Article  CAS  Google Scholar 

  82. Sales Solano AM, Costa de Araújo CK, Vieira de Melo J, Peralta-Hernandez JM, Ribeiro da Silva D, Martínez-Huitle CA (2013) Decontamination of real textile industrial effluent by strong oxidant species electrogenerated on diamond electrode: viability and disadvantages of this electrochemical technology. Appl Catal B 130–131:112–120

    Google Scholar 

  83. Wang A, Qu J, Ru J, Liu H, Ge J (2005) Mineralization of an azo dye Acid Red 14 by electro-Fenton’s reagent using an activated carbon fiber cathode. Dyes Pigments 65:227–233

    Article  CAS  Google Scholar 

  84. Wang CT, Chou WL, Chung MH, Kuo YM (2010) COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination 253:129–134

    Article  CAS  Google Scholar 

  85. Wang SB (2008) A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 76:714–720

    Article  CAS  Google Scholar 

  86. Ruiz EJ, Hernández-Ramírez A, Peralta-Hernández JM, Arias C, Brillas E (2011) Application of solar photoelectro-Fenton technology to azo dyes mineralization: effect of current density, Fe2+ and dye concentrations. Chem Eng J 171:385–392

    Article  CAS  Google Scholar 

  87. Espinoza C, Romero J, Villegas L, Cornejo-Ponce L, Salazar R (2016) Mineralization of the textile dye acid yellow 42 by solar photoelectro-Fenton in a lab-pilot plant. J Hazard Mater 319:24–33

    Article  CAS  Google Scholar 

  88. Almeida LC, Silva BF, Zanoni MVB (2014) Combined photoelectrocatalytic/electro-Fenton process using a Pt/TiO2NTs photoanode for enhanced degradation of an azo dye: a mechanistic study. J Electroanal Chem 734:43–52

    Article  CAS  Google Scholar 

  89. Roshini PS, Gandhimathi R, Ramesh ST, Nidheesh PV (2017) Combined electro-Fenton and biological processes for the treatment of industrial textile effluent: mineralization and toxicity analysis. J Hazard Toxic Radioact Waste 21:04017016

    Article  Google Scholar 

  90. Zhu X, Ni J, Wei J, Xing X, Li H (2011) Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron doped diamond anode. J Hazard Mater 189:127–133

    Article  CAS  Google Scholar 

  91. Alvarez-Guerra E, Dominguez-Ramos A, Irabien A (2011) Design of the Photovoltaic Solar Electro-Oxidation (PSEO) process for wastewater treatment. Chem Eng Res Des 89:2679–2685

    Article  CAS  Google Scholar 

  92. Garcia-Segura S, Brillas E (2016) Combustion of textile monoazo, diazo and triazo dyes by solar photoelectro-Fenton: decolorization, kinetics and degradation routes. Appl Catal B 181:681–691

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Research Fund from DGRSDT/MESRS (Algeria).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

S1: Appendix

S1: Appendix

S1: Different chemical formulas of dyes used in the study of Oliveira do Nascimento et al. [77]

Name

Formula

Reactive Orange 16 (RO16)

Reactive Violet 4 (RV4)

Reactive Red 228 (RR228)

Reactive Black 5 (RB5)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aoudj, S., Bahloul, K., Khelifa, A. (2021). Degradation of Dyes by Electrochemical Advanced Oxidation Processes. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_5

Download citation

Publish with us

Policies and ethics