Skip to main content

Dead or Living Biomass Performance for the Removal of Dyes

  • Chapter
  • First Online:
Advanced Removal Techniques for Dye-containing Wastewaters

Abstract

The presence of a vital resource such as water distinguishes our Earth from other planets. Out of the total amount of water present on the earth’s surface, only about 3% accounts for the freshwater which is fit for drinking. Setting aside the two-thirds of this freshwater that remains frozen in ice-caps and glaciers, only about 1% remain available for human use, making it the most precious natural resource. Water, being a universal solvent, can easily dissolve more substances when compared to any other liquid on earth, hence, making it vulnerable to contamination by various aquatic pollutants. Among these pollutants, the presence of dyes in water channels has become a growing concern among environmental scientist. Dyes, known to be in use since 3500 BC, are colored substances that are capable of chemically binding to the substrate to which it is being applied. A number of industries such as textile, cosmetic, plastic, and paper-making industries use different types of dyes in their processes. Colored effluents discharged by these industries into the water bodies gives rise to both direct and indirect consequences to aquatic habitat. The former includes attenuation of the oxygen levels dissolved in water, exhaustion of re-oxygenation capacity, percolation of dyestuff into groundwater from the soil, decreased penetration of light into water which impedes photosynthesis, and esthetic issue of water downstream. The latter includes death of aquatic creatures, micro toxicity and genotoxicity caused due to colored allergens, allergic responses, mental disorders in kids like Attention Deficit Hyperactivity Disorder (ADHD), bladder cancer in humans, water eutrophication, etc. Although various physical and chemical methods are available for treatment of dye effluents, they are either expensive or ineffective. In the recent times, adsorption has been proved to be a reliable, simple, relatively cheap, and effective technique. Biosorption-based process that take advantage of the sorption capacity of various biomaterials (dead or living) or their derivatives for removing substances from solutions, presents an eco-friendly and economical replacement to common adsorbent materials like activated carbon that are often expensive. Its operation is quite analogous to conventional ion-exchange technique. Microorganisms uptake dyes actively via bioaccumulation in which energy is driven from living organisms or passively through biosorption which does not utilize energy. The dyes are adsorbed onto the cellular structure using ligands or functional groups present on the cell surface. A prime factor to be taken into consideration while selecting a biomass is its availability. A readily available biomass that is found in nature or is a waste material helps effectively in bringing down the cost. A broad spectrum of microbial biomass including bacteria, cyanobacteria, algae, fungi, chitin, and plant and animal materials have proved to be highly efficient cost-effective biosorbents. Agricultural solid wastes have also been effectively used for the elimination of dyes from aqueous solution. The performance of a biosorbent can be further optimized by physical and chemical modification of the biosorbent leading to the activation or deactivation of surface functional groups. An approach which incorporates both aerobic and anaerobic process (rather than either one of them) into a single system has effectively helped in the elimination of azo dyes. This chapter aims to throw an insight on how various dead and living biomass can help in the removal of dyes which pose serious threats to aquatic as well as human lives. Also, in the due course, the reader comes across the influence of various factors on the process of biosorption. On comparison with live biomass, it is noted that dead, dried, pretreated biomass offer an attractive biosorbent for removing dyes from colored effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026. https://doi.org/10.1016/j.procbio.2004.04.008

    Article  CAS  Google Scholar 

  2. Aksu Z, Dönmez G (2003) A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere 50(8):1075–1083. https://doi.org/10.1016/s0045-6535(02)00623-9

    Article  CAS  Google Scholar 

  3. Angelova R, Baldikova E, Pospiskova K, Maderova Z, Safarikova M, Safarik I (2016) Magnetically modified Sargassum horneri biomass as an adsorbent for organic dye removal. J Clean Prod 137:189–194. https://doi.org/10.1016/j.jclepro.2016.07.068

    Article  CAS  Google Scholar 

  4. Archibald F, Roy B (1992) Production of manganic chelates by laccase from the lignin-degrading fungus Trametes (Coriolus) versicolor. Appl Environ Microbiol 58(5):1496–1499. https://doi.org/10.1128/aem.58.5.1496-1499.1992

    Article  CAS  Google Scholar 

  5. Asgher M (2011) Biosorption of reactive dyes: a review. Water Air Soil Pollut 223(5):2417–2435. https://doi.org/10.1007/s11270-011-1034-z

    Article  CAS  Google Scholar 

  6. Asim N, Amin M, Alghoul M, Sulaiman S, Razali H, Akhtaruzzaman M et al (2019) Developing of chemically treated waste biomass adsorbent for dye removal. J Nat Fibers 1–10. https://doi.org/10.1080/15440478.2019.1675214

  7. Astuti W, Sulistyaningsih T, Kusumastuti E, Thomas G, Kusnadi R (2019) Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Biores Technol 287:121426. https://doi.org/10.1016/j.biortech.2019.121426

  8. Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78A–87A. https://doi.org/10.1021/es00051a002

    Article  CAS  Google Scholar 

  9. Behl K, Sinha S, Sharma M, Singh R, Joshi M, Bhatnagar A, Nigam S (2019) One-time cultivation of Chlorella pyrenoidosa in aqueous dye solution supplemented with biochar for microalgal growth, dye decolorization and lipid production. Chem Eng J 364:552–561. https://doi.org/10.1016/j.cej.2019.01.180

    Article  CAS  Google Scholar 

  10. Bello K, Sarojini B, Narayana B, Rao A, Byrappa K (2018) A study on adsorption behavior of newly synthesized banana pseudo-stem derived superabsorbent hydrogels for cationic and anionic dye removal from effluents. Carbohyd Polym 181:605–615. https://doi.org/10.1016/j.carbpol.2017.11.106

    Article  CAS  Google Scholar 

  11. Bhatia D, Sharma N, Singh J, Kanwar R (2017) Biological methods for textile dye removal from wastewater: a review. Critical Rev Environ Sci Technol 47(19):1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  12. Bhomick P, Supong A, Baruah M, Pongener C, Sinha D (2018) Pine cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies. Sustain Chem Pharmacy 10:41–49. https://doi.org/10.1016/j.scp.2018.09.001

    Article  Google Scholar 

  13. Bustard M, McMullan G, McHale A (1998) Biosorption of textile dyes by biomass derived from Kluyveromyces marxianus IMB3. Bioprocess Eng 19(6):427–430. https://doi.org/10.1007/pl00009028

    Article  CAS  Google Scholar 

  14. Çelekli A, Al-Nuaimi A, Bozkurt H (2019) Adsorption kinetic and isotherms of Reactive Red 120 on Moringa oleifera seed as an eco-friendly process. J Mol Struct 1195:168–178. https://doi.org/10.1016/j.molstruc.2019.05.106

  15. Chen Y, Lin Y, Ho S, Zhou Y, Ren N (2018) Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Biores Technol 259:104–110. https://doi.org/10.1016/j.biortech.2018.02.094

    Article  CAS  Google Scholar 

  16. Chen S, Qin C, Wang T, Chen F, Li X, Hou H, Zhou M (2019) Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: adsorption capacity, isotherm, kinetic, thermodynamics and mechanism. J Mol Liq 285:62–74. https://doi.org/10.1016/j.molliq.2019.04.035

    Article  CAS  Google Scholar 

  17. Chowdhury S, Saha P (2012) Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers. Appl Water Sci 2(3):209–219. https://doi.org/10.1007/s13201-012-0039-0

    Article  CAS  Google Scholar 

  18. Chu H, Chen K (2002) Reuse of activated sludge biomass: II. The rate processes for the adsorption of basic dyes on biomass. Process Biochem 37(10):1129–1134. https://doi.org/10.1016/s0032-9592(01)00326-0

  19. Daneshvar E, Sohrabi M, Kousha M, Bhatnagar A, Aliakbarian B, Converti A, Norrström A (2014) Shrimp shell as an efficient bioadsorbent for Acid Blue 25 dye removal from aqueous solution. J Taiwan Instit Chem Eng 45(6):2926–2934. https://doi.org/10.1016/j.jtice.2014.09.019

    Article  CAS  Google Scholar 

  20. Das M, Samal A, Mehar N (2019) Butea monosperma leaf as an adsorbent of methylene blue: recovery of the dye and reuse of the adsorbent. Int J Environ Sci Technol 17(4):2105–2112. https://doi.org/10.1007/s13762-019-02480-7

    Article  CAS  Google Scholar 

  21. Erradi G, El yousfi F, Stitou M (2019) Valorization of snail shell (Helix aspersa) from Tangier-Tetouan region (north of Morocco): an application to eliminate methylene blue. Mediterranean J Chem 8(2):94–102. https://doi.org/10.13171/10.13171/mjc8219040804ge

  22. Fan H, Ma Y, Wan J, Wang Y (2020) Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. Environ Sci Pollut Res 27(9):9152–9166. https://doi.org/10.1007/s11356-019-07024-7

    Article  CAS  Google Scholar 

  23. Fiaz R, Hafeez M, Mahmood R (2019) Ficcus palmata leaves as a low-cost biosorbent for methylene blue: thermodynamic and kinetic studies. Water Environ Res 91(8):689–699. https://doi.org/10.1002/wer.1093

    Article  CAS  Google Scholar 

  24. Fontana K, Chaves E, Sanchez J, Watanabe E, Pietrobelli J, Lenzi G (2016) Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies. Ecotoxicol Environ Saf 124:329–336. https://doi.org/10.1016/j.ecoenv.2015.11.012

  25. Fu Y, Viraraghavan T (2000) Removal of a dye from an aqueous solution by the fungus aspergillus niger. Water Qual Res J 35(1):95–112. https://doi.org/10.2166/wqrj.2000.006

    Article  CAS  Google Scholar 

  26. Fu Y, Viraraghavan T (2002) Removal of congo red from an aqueous solution by fungus aspergillus niger. Adv Environ Res 7(1):239–247. https://doi.org/10.1016/s1093-0191(01)00123-x

    Article  CAS  Google Scholar 

  27. Gadd G (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28. https://doi.org/10.1002/jctb.1999

    Article  CAS  Google Scholar 

  28. Gallagher K, Healy M, Allen S (1997) Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. Global environmental biotechnology, Proceedings of the third biennial meeting of the international society for environmental biotechnology, 27–50. https://doi.org/10.1016/s0166-1116(97)80033-7

    Google Scholar 

  29. Han M, Yun Y (2007) Mechanistic understanding and performance enhancement of biosorption of reactive dyestuffs by the waste biomass generated from amino acid fermentation process. Biochem Eng J 36(1):2–7. https://doi.org/10.1016/j.bej.2006.06.010

    Article  CAS  Google Scholar 

  30. Hu M, Reeves M (1997) Biosorption of uranium by pseudomonas aeruginosa strain CSU immobilized in a novel matrix. Biotechnol Prog 13(1):60–70. https://doi.org/10.1021/bp9600849

    Article  CAS  Google Scholar 

  31. Iqbal J, Wattoo F, Wattoo M, Malik R, Tirmizi S, Imran M, Ghangro A (2011) Adsorption of acid yellow dye on flakes of chitosan prepared from fishery wastes. Arab J Chem 4(4):389–395. https://doi.org/10.1016/j.arabjc.2010.07.007

    Article  CAS  Google Scholar 

  32. Jain R, Gupta V, Sikarwar S (2010) Adsorption and desorption studies on hazardous dye Naphthol Yellow S. J Hazard Mater 182(1–3):749–756. https://doi.org/10.1016/j.jhazmat.2010.06.098

    Article  CAS  Google Scholar 

  33. Keharia H, Madamwar D (2003) Bioremediation concepts for treatment of dye containing wastewater: a review. NISCAIR-CSIR, India (Nopr.niscair.res.in.), 41(09):1068–1075. http://nopr.niscair.res.in/handle/123456789/17164

  34. Khan M, Sahoo B, Mukherjee A, Naskar A (2019) Biosorption of acid yellow-99 using mango (Mangifera indica) leaf powder, an economic agricultural waste. SN Appl Sci 1(11). https://doi.org/10.1007/s42452–019-1537-6

    Google Scholar 

  35. Kirby N, McMullan G, Marchant R (1997) Bioremediation of textile industry wastewater by white-rot fungi. Global environmental biotechnology, Proceedings of the third biennial meeting of the international society for environmental biotechnology, 711–718. https://doi.org/10.1016/s0166-1116(97)80083-0

    Google Scholar 

  36. Kolenbrander P, Ensign J (1968) Isolation and chemical structure of the peptidoglycan of spirillum serpens cell walls. J Bacteriol 95(1):201–210. https://doi.org/10.1128/jb.95.1.201-210.1968

    Article  CAS  Google Scholar 

  37. Kooh M, Dahri M, Lim L (2016) Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis. Appl Water Sci 7(7):3573–3581. https://doi.org/10.1007/s13201-016-0496-y

    Article  CAS  Google Scholar 

  38. Kousha M, Tavakoli S, Daneshvar E, Vazirzadeh A, Bhatnagar A (2015) Central composite design optimization of Acid Blue 25 dye biosorption using shrimp shell biomass. J Mol Liq 207:266–273. https://doi.org/10.1016/j.molliq.2015.03.046

    Article  CAS  Google Scholar 

  39. Kowalkowska A, Jóźwiak T (2019) Utilization of pumpkin (Cucurbita pepo) seed husks as a low-cost sorbent for removing anionic and cationic dyes from aqueous solutions. Desalin Water Treatment 171:397–407. https://doi.org/10.5004/dwt.2019.24761

    Article  CAS  Google Scholar 

  40. Liang J, Xia J, Long J (2017) Biosorption of methylene blue by nonliving biomass of the brown macroalga Sargassum hemiphyllum. Water Sci Technol 76(6):1574–1583. https://doi.org/10.2166/wst.2017.343

    Article  CAS  Google Scholar 

  41. Liu C (2011) Effective biosorption of reactive blue 5 by pH-independent lyophilized biomass of Bacillus megaterium. Afr J Biotech 10(73):16626–16636. https://doi.org/10.5897/ajb11.1824

    Article  CAS  Google Scholar 

  42. Lu Y, Priyantha N, Lim L (2020) Ipomoea aquatica roots as environmentally friendly and green adsorbent for efficient removal of Auramine O dye. Surf Interf 20: https://doi.org/10.1016/j.surfin.2020.100543

    Article  CAS  Google Scholar 

  43. Mishra S, Cheng L, Maiti A (2020) The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: a comprehensive review. J Environ Chem Eng 9(1): https://doi.org/10.1016/j.jece.2020.104901

    Article  CAS  Google Scholar 

  44. Mittal A, Gupta S (1996) Biosorption of cationic dyes by dead macro fungus fomitopsis carnea: batch studies. Water Sci Technol 34(10):81–87. https://doi.org/10.2166/wst.1996.0242

    Article  CAS  Google Scholar 

  45. Moghazy R, Labena A, Husien S (2019) Eco-friendly complementary biosorption process of methylene blue using micro-sized dried biosorbents of two macro-algal species (Ulva fasciata and Sargassum dentifolium): full factorial design, equilibrium, and kinetic studies. Int J Biol Macromol 134:330–343. https://doi.org/10.1016/j.ijbiomac.2019.04.207

    Article  CAS  Google Scholar 

  46. Moghazy R (2019) Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water SA 45(1 January):20–28. https://doi.org/10.4314/wsa.v45i1.03

  47. Namasivayam C, Muniasamy N, Gayatri K, Rani M, Ranganathan K (1996) Removal of dyes from aqueous solutions by cellulosic waste orange peel. Biores Technol 57(1):37–43. https://doi.org/10.1016/0960-8524(96)00044-2

    Article  Google Scholar 

  48. Nautiyal P, Subramanian K, Dastidar M (2016) Adsorptive removal of dye using biochar derived from residual algae after in-situ transesterification: Alternate use of waste of biodiesel industry. J Environ Manage 182:187–197. https://doi.org/10.1016/j.jenvman.2016.07.063

    Article  CAS  Google Scholar 

  49. Nethaji S, Sivasamy A, Thennarasu G, Saravanan S (2010) Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass. J Hazard Mater 181(1–3):271–280. https://doi.org/10.1016/j.jhazmat.2010.05.008

    Article  CAS  Google Scholar 

  50. Niero G, Corrêa A, Trierweiler G, Matos A, Corrêa R, Bazani H, Radetski C (2019) Using modified fish scale waste from Sardinella brasiliensis as a low-cost adsorbent to remove dyes from textile effluents. J Environ Sci Health Part A 54(11):1083–1090. https://doi.org/10.1080/10934529.2019.1631091

    Article  CAS  Google Scholar 

  51. Nooraee Nia N, Rahmani M, Kaykhaii M, Sasani M (2017) Evaluation of eucalyptus leaves as an adsorbent for decolorization of Methyl Violet (2B) dye in contaminated waters: thermodynamic and kinetics model. Model Earth Syst Environ 3(2):825–829. https://doi.org/10.1007/s40808-017-0338-4

    Article  Google Scholar 

  52. Oliveira G, Leme D, de Lapuente J, Brito L, Porredón C, Rodrigues L et al (2018) A test battery for assessing the ecotoxic effects of textile dyes. Chem Biol Interact 291:171–179. https://doi.org/10.1016/j.cbi.2018.06.026

    Article  CAS  Google Scholar 

  53. Oloo C, Onyari J, Wanyonyi W, Wabomba J, Muinde V (2020) Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: equilibrium and kinetics studies. Environ Chem Ecotoxicol 2:64–72. https://doi.org/10.1016/j.enceco.2020.05.001

    Article  Google Scholar 

  54. Ooi J, Lee L, Hiew B, Thangalazhy-Gopakumar S, Lim S, Gan S (2017) Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: equilibrium, kinetic and thermodynamic studies. Biores Technol 245:656–664. https://doi.org/10.1016/j.biortech.2017.08.153

    Article  CAS  Google Scholar 

  55. O’Mahony T, Guibal E, Tobin J (2002) Reactive dye biosorption by Rhizopus arrhizus biomass. Enzyme Microbial Technol 31(4):456–463. https://doi.org/10.1016/s0141-0229(02)00110-2

    Article  Google Scholar 

  56. Panahi M, Behnam S (2018) Biosorption of malachite green dye by the brown alga dictyota cervicornis: kinetics and isotherm study. Color Technol 134(4):292–298. https://doi.org/10.1111/cote.12341

    Article  CAS  Google Scholar 

  57. Pradhananga R, Adhikari L, Shrestha R, Adhikari M, Rajbhandari R, Ariga K, Shrestha L (2017) Wool carpet dye adsorption on nanoporous carbon materials derived from agro-product. C 3(4):12. https://doi.org/10.3390/c3020012

  58. Ren H, Zhang R, Wang Q, Pan H, Wang Y (2016) Garlic root biomass as novel biosorbents for malachite green removal: parameter optimization, process kinetics and toxicity test. Chem Res Chin Univ 32(4):647–654. https://doi.org/10.1007/s40242-016-6095-5

    Article  CAS  Google Scholar 

  59. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores Technol 77(3):247–255. https://doi.org/10.1016/s0960-8524(00)00080-8

    Article  CAS  Google Scholar 

  60. Roy T, Mondal N (2015) Biosorption of Congo Red from aqueous solution onto burned root of Eichhornia crassipes biomass. Appl Water Sci 7(4):1841–1854. https://doi.org/10.1007/s13201-015-0358-z

    Article  CAS  Google Scholar 

  61. Rubín E, Rodríguez P, Herrero R, Sastre de Vicente M (2010) Adsorption of methylene blue on chemically modified algal biomass: equilibrium, dynamic, and surface data. J Chem Eng Data 55(12):5707–5714. https://doi.org/10.1021/je100666v

    Article  CAS  Google Scholar 

  62. Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179(1–3):564–572. https://doi.org/10.1016/j.jhazmat.2010.03.041

    Article  CAS  Google Scholar 

  63. Scheufele F, Staudt J, Ueda M, Ribeiro C, Steffen V, Borba C et al (2020) Biosorption of direct black dye by cassava root husks: kinetics, equilibrium, thermodynamics and mechanism assessment. J Environ Chem Eng 8(2): https://doi.org/10.1016/j.jece.2019.103533

    Article  CAS  Google Scholar 

  64. Sharma A, Sharma G, Kumar A, Siddiqi Z, Sharma G (2016) Exclusion of organic dye using neoteric activated carbon prepared from cornulaca monacantha stem: equilibrium and thermodynamics studies. Mater Sci Forum 875:1–15. https://doi.org/10.4028/www.scientific.net/msf.875.1

    Article  Google Scholar 

  65. Sponza D, Işik M (2002) Decolorization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme Microbial Technol 31(1–2):102–110. https://doi.org/10.1016/s0141-0229(02)00081-9

    Article  CAS  Google Scholar 

  66. Srikantan C, Suraishkumar G, Srivastava S (2018) Effect of light on the kinetics and equilibrium of the textile dye (Reactive Red 120) adsorption by Helianthus annuus hairy roots. Biores Technol 257:84–91. https://doi.org/10.1016/j.biortech.2018.02.075

    Article  CAS  Google Scholar 

  67. Strominger J (1982) Microbial surfaces microbial cell walls and membranes H. J. Rogers H. R. Perkins J. B. Ward. Bioscience 32(10):814–814. https://doi.org/10.2307/1308982

  68. Suteu D, Badeanu M, Malutan T, Chirculescu A (2016) Valorization of food wastes (orange seeds) as adsorbent for dye retention from aqueous medium. Desalin Water Treatment 57(60):29070–29081. https://doi.org/10.1080/19443994.2016.1196392

    Article  CAS  Google Scholar 

  69. Tai-Lee H (1996) Removal of reactive dyes from aqueous solution by different bacterial genera. Water Sci Technol 34(10):89–95. https://doi.org/10.2166/wst.1996.0243

    Article  Google Scholar 

  70. Tatarko M, Bumpus J (1998) Biodegradation of Congo Red by phanerochaete chrysosporium. Water Res 32(5):1713–1717. https://doi.org/10.1016/s0043-1354(97)00378-3

    Article  CAS  Google Scholar 

  71. Tsai W, Chen H (2010) Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. J Hazard Mater 175(1–3):844–849. https://doi.org/10.1016/j.jhazmat.2009.10.087

    Article  CAS  Google Scholar 

  72. Vijayaraghavan K, Yun Y (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26(3):266–291. https://doi.org/10.1016/j.biotechadv.2008.02.002

    Article  CAS  Google Scholar 

  73. Vijayaraghavan K, Yun Y (2007a) Chemical modification and immobilization of corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. Indus Eng Chem Res 46(2):608–617. https://doi.org/10.1021/ie061158g

  74. Vijayaraghavan K, Yun Y (2007b) Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of reactive black 5 from aqueous solution. J Hazard Mater 141(1):45–52. https://doi.org/10.1016/j.jhazmat.2006.06.081

  75. Wanyonyi W, Onyari J, Shiundu P (2014) Adsorption of Congo Red Dye from aqueous solutions using roots of eichhornia crassipes: kinetic and equilibrium studies. Energy Proc 50:862–869. https://doi.org/10.1016/j.egypro.2014.06.105

    Article  CAS  Google Scholar 

  76. Won S, Choi S, Chung B, Park D, Park J, Yun Y (2004) Biosorptive decolorization of reactive orange 16 using the waste biomass ofcorynebacteriumglutamicum. Ind Eng Chem Res 43(24):7865–7869. https://doi.org/10.1021/ie049559o

    Article  CAS  Google Scholar 

  77. Won S, Choi S, Yun Y (2005) Interaction between protonated waste biomass of corynebacterium glutamicum and anionic dye Reactive Red 4. Colloids Surf A 262(1–3):175–180. https://doi.org/10.1016/j.colsurfa.2005.04.028

    Article  CAS  Google Scholar 

  78. Won S, Yun Y (2008) Biosorptive removal of Reactive Yellow 2 using waste biomass from lysine fermentation process. Dyes Pigm 76(2):502–507. https://doi.org/10.1016/j.dyepig.2006.10.011

    Article  CAS  Google Scholar 

  79. Yang S, Chen Y, Kang J, Xie T, He L, Xing D et al (2019) Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. J Clean Prod 227:33–47. https://doi.org/10.1016/j.jclepro.2019.04.005

    Article  CAS  Google Scholar 

  80. Yu H, Wang T, Yu L, Dai W, Ma N, Hu X, Wang Y (2016) Remarkable adsorption capacity of Ni-doped magnolia-leaf-derived bioadsorbent for congo red. J Taiwan Instit Chem Eng 64:279–284. https://doi.org/10.1016/j.jtice.2016.04.008

    Article  CAS  Google Scholar 

  81. Yusra S, Bhatti HN (2010) Factors affecting biosorption of direct dyes from aqueous solution. Asian J Chem 22(9):6625–6639

    Google Scholar 

  82. Zaidi N, Lim L, Usman A (2018) Artocarpus odoratissimus leaf-based cellulose as adsorbent for removal of methyl violet and crystal violet dyes from aqueous solution. Cellulose 25(5):3037–3049. https://doi.org/10.1007/s10570-018-1762-y

    Article  CAS  Google Scholar 

  83. Zhou J, Banks C (1993) Mechanism of humic acid colour removal from natural waters by fungal biomass biosorption. Chemosphere 27(4):607–620. https://doi.org/10.1016/0045-6535(93)90096-n

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, A., Venkatesan, D., Kumar, J.A. (2021). Dead or Living Biomass Performance for the Removal of Dyes. In: Muthu, S.S., Khadir, A. (eds) Advanced Removal Techniques for Dye-containing Wastewaters. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-16-3164-1_10

Download citation

Publish with us

Policies and ethics