Skip to main content

Cu(InGa)Se2 Solar Cell

  • Chapter
  • First Online:
Semiconductor Photovoltaic Cells
  • 698 Accesses

Abstract

CuInSe2 and CuInS2, ternary compounds consisting of I B, III A, and VI A elements, are adopted as absorption layers of copper indium selenium (CIS) thin-film solar cells. Copper indium gallium selenium (CIGS) solar cells are developed when Ga is doped into the CIS thin-film solar cells to replace part of the elements of the cells. The crystal structures with similar component ratios (e.g., CuInSe2 (ABC2) solar cells) exhibit high similarity to chalcopyrite structure. Chalcopyrite structure is largely identical to the diamond structure; it is an ordered structure with I and III elements replacing II elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Nakada, Electron. Mater. Lett. 8, 179–185 (2012)

    Article  Google Scholar 

  2. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, Com, 2011)

    Google Scholar 

  3. Y. Zhong, Study on the application of surface copper indium gallium selenium thin films in solar cells, the Master Degree Dissertation of National Cheng Kung University, 2009

    Google Scholar 

  4. S. Kodigala, Cu(In1-xGax)Se2 Based Thin Film Solar Cells (Academic Press, 2010)

    Google Scholar 

  5. Y. Xue, B. Yang, Evolution of (In, Ga) 2Se3-Curich-In (Ga) rich of CIGS thin film. J. Opto-electron. Laser 19, 348–351 (2008) (in Chinese)

    Google Scholar 

  6. K. Chopra, Prog. Photovolt. Res. Appl. 12, 69–92 (2004)

    Google Scholar 

  7. S.H. Wei, Appl. Phys. Lett. 72, 3199 (1998)

    Article  Google Scholar 

  8. W. Li, J. Synth. Crys. 35, 131–134 (2006)

    Google Scholar 

  9. B. Stanberya, Crit. Rev. Solid State Mater. Sci. 27, 73–117 (2002

    Google Scholar 

  10. P. Reinhard et al., IEEE J. Phothovoltaics 3, 572–580 (2013)

    Article  Google Scholar 

  11. A. Hultqvist et al., Sol. Energy Mater. Sol. Cells 95, 497–503 (2011)

    Article  Google Scholar 

  12. H. Neumann et al., Solar Cells 16, 317–333 (1986)

    Article  Google Scholar 

  13. L. Gütay et al., Thin Solid Films 517, 2222–2225 (2009)

    Article  Google Scholar 

  14. L. Gutay et al., in 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 874–877

    Google Scholar 

  15. A. Shimizu, Jan. J. Appl. Phys. 39, 109 (2000)

    Article  Google Scholar 

  16. U. Rau, Appl. Phys. A 69, 131–147 (1999)

    Article  Google Scholar 

  17. I.L. Repins et al., in 34th IEEE Photovoltaic Specialists Conference (PVSC) (2009), pp. 978–983

    Google Scholar 

  18. W.C. Lim et al., Surf. Interface Anal. 44, 724–728 (2012)

    Article  Google Scholar 

  19. S. Xiong, M. Zhu et al., Solar Cell Foundation and Application, vol. 10 (Science Press, Beijing, 2009) (in Chinese)

    Google Scholar 

  20. T. Schlenker et al., Thin Solid Films 480, 29–32 (2005)

    Article  Google Scholar 

  21. J. Nelson, The physics of solar cells , trans. Y. Gao (Shanghai Jiaotong University Press, Shanghai, 2011). (in Chinese)

    Google Scholar 

  22. S. Fonash, Solar Cell Device Physics (Elsevier, 1981)

    Google Scholar 

  23. M. Gloeckler, Device Physics of Cu (In, Ga) Se2 Thin-Film Solar Cells (Colorado State University, 2005)

    Google Scholar 

  24. A. Rockett et al., Thin Solid Films 237, 1–11 (1994)

    Article  Google Scholar 

  25. M. Igalson, Optpelectron. Rev. 4, 261–268 (2003)

    Google Scholar 

  26. F. Liu, Study on the diode characteristics of Cu(In, Ga)Se2 thin film solar cells. J Synth. Cryst. 38(2), 455–459 (2009)

    Google Scholar 

  27. A. Niemegeers et al., Prog. Photovolt. Res. Appl. 6, 407–421 (1998)

    Google Scholar 

  28. K. Hamakawa, Solar Photovoltaic Cell and Its Application, trans. H. Zhang and X. Cui (Science Press, 2008) (in Chinese)

    Google Scholar 

  29. R.N. Bhattacharya et al., Sol. Energy 77, 679–683 (2004)

    Article  Google Scholar 

  30. T. Nakada et al., in The 24th Photovoltaic Energy Conversion, vol. 1 (1994), pp. 95–98

    Google Scholar 

  31. A. Yamada et al., Thin Solid Films 480, 503–508 (2005)

    Article  Google Scholar 

  32. T. Nakada et al., Appl. Phys. Lett. 74, 2444–2446 (1999)

    Article  Google Scholar 

  33. M. Topic et al., in 14th EU-PVSEC, Barcelona (1997), pp. 2139–2142

    Google Scholar 

  34. W. Yang, Preparation and Properties of CIGS Thin Film Solar Cells. The Master Degree Dissertation of Shanghai Jiaotong University, 2007 (in Chinese)

    Google Scholar 

  35. A.O. Pudov et al., J. Appl. Phys. 97, 064901-064901-6 (2005)

    Google Scholar 

  36. M. Contreras et al., Appl. Phys. Lett. 63, 1824–1826 (1993)

    Article  Google Scholar 

  37. V. Gremenok et al., Phys. Stat. Sol. (c) 6, 1237–1240 (2009)

    Article  Google Scholar 

  38. R. Wuerz et al., Thin Solid Films 517, 2415–2418 (2009)

    Article  Google Scholar 

  39. F. Kessler et al., Sol. Energy 77, 685–695 (2004)

    Article  Google Scholar 

  40. T. Sugiyama et al., Jan. J. Appl. Phys. 39, 4816 (2000)

    Article  Google Scholar 

  41. A. Yamada et al., in The 28th Photovoltaic Specialists Conference (2000), pp. 462–465

    Google Scholar 

  42. B. Sang et al., Sol. Energy Mater. Sol. Cells 67, 237–245 (2001)

    Article  Google Scholar 

  43. N.E. Gorji et al., Sol. Energy 86, 920–925 (2012)

    Article  Google Scholar 

  44. S. Yu, J. Zhong et al., Solar Energy Photovoltaic Device Technology (University of Electronic Science and Technology Press, 2011) (in Chinese)

    Google Scholar 

  45. B. Dai, H. Zheng, Solar Cells Technical Manuals, Chapter 7, p. 153 (Posts & Telecom Press, Beijing, 2012). (in Chinese)

    Google Scholar 

  46. L. Pengwei, Preparation and Characterization of CIGS Thin Film Solar Cell Materials (Henan University, 2012)

    Google Scholar 

  47. Hernández J. Sastré, Rev. Mex. Fis. 57, 441–445 (2011)

    Google Scholar 

  48. P.K. Johnson et al., Prog. Photovolt. Res. Appl. 13, 579–586 (2005)

    Google Scholar 

  49. S. Wu, L. Xu, Research on preparing technology of CIGS thin film by electrodeposition method. Anhui Chem. Ind. 33(6), 32–33 (2007)

    Google Scholar 

  50. C. Liao, J. Han et al., Effect of Se vapor concentration on CIGS film preparation. Acta Phys. Chim. Sin. 27(2), 432–436 (2011)

    Article  Google Scholar 

  51. M. Venkatachalam, J. Instrum. Soc. India 38 (2008)

    Google Scholar 

  52. E. Eser et al., in The 23th Photovoltaic Specialists Conference (2005), pp. 515–518

    Google Scholar 

  53. K. Mukati et al., in IEEE 4th World Conference on Photovoltaic Energy Conversion, vol. 2 (2006), pp. 1842–1845

    Google Scholar 

  54. C. Li, Research on CIGS Thin-Film Solar Cell Made by Magnetron Sputtering. The Master Degree Dissertation of Henan Normal university, 2011 (in Chinese)

    Google Scholar 

  55. E. Eser et al., in The 35th Photovoltaic Specialists Conference (PVSC) (2010), pp. 661–666

    Google Scholar 

  56. A. Grimm et al., Thin Solid Films 515, 6073–6075 (2007)

    Article  Google Scholar 

  57. R.N. Bhattacharya et al., Appl. Phys. Lett. 89, 253503 (2006)

    Article  Google Scholar 

  58. S. Chaisitsak et al., Jan. J. Appl. Phys. 38, 4989 (1999)

    Article  Google Scholar 

  59. R.N. Bhattacharya et al., J. Phys. Chem. Sol. 66, 1862–1864 (2005)

    Article  Google Scholar 

  60. F. Kessler et al., Thin Solid Films 480, 491–498 (2005)

    Article  Google Scholar 

  61. U. Rau, Appl. Phys. A 96, 221–234 (2009)

    Article  Google Scholar 

  62. M. Pagliaro et al., Chemsuschem 1, 880–891 (2008)

    Article  Google Scholar 

  63. W.K. Batchelor et al., in The 29th Photovoltaic Specialists Conference (2002), pp. 716–719

    Google Scholar 

  64. X. Zhang et al., Int. Soc. Opt. Photon. 83120H-83120H-10 (2011)

    Google Scholar 

  65. C. Li, Research progress of Cu(In, Ga)Se2 thin film solar cells. Chin. J. Power Sources 33(2), 77–80 (2009). (in Chinese)

    Google Scholar 

  66. V. K. Kapur et al., Lab to large scale transition for non-vacuum thin film CIGS solar cells: Phase I. Ann. Tech. Rep. 1 (2003)

    Google Scholar 

  67. U.P. Singh et al., Int. J. Photoenergy 2010, 468174 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfu Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Xidian University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C., Zhang, J., Ma, X., Feng, Q. (2021). Cu(InGa)Se2 Solar Cell. In: Semiconductor Photovoltaic Cells. Springer, Singapore. https://doi.org/10.1007/978-981-15-9480-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9480-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9479-3

  • Online ISBN: 978-981-15-9480-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics