Skip to main content

Use of Phytochemicals: A Promising and Eco-Friendly Approach for the Management of Mosquito Vector Populations

  • Chapter
  • First Online:
Molecular Identification of Mosquito Vectors and Their Management

Abstract

From the last decades, research focuses on plant natural products to explore the insecticidal activity against mosquitoes. This is the modern challenge in parasitology. The main aimed is to reduce the frequent exploitation of synthetic insecticides by which mosquitoes become resistant. This triggers serious threats to human health and leads to loss of biodiversity. The use of plant extracts was started from ancient times for mosquito control. These are biodegradable, harmless, non-hazardous, cost effective, and easily available throughout the world. Phytochemicals are target-specific activities against mosquito’s vector of different species. Plants possess outstanding larvicidal activity with very low LC50and LC90 values against vectors of genera such as Culex, Aedes, and Anopheles. Furthermore, the effectiveness of pure compounds isolated from plant, mode, and mechanism of action as well as their influence on mosquito targeted species is still uncovered. On the other hand, still there are strong boundaries for the development of profitable mosquito larvicides, pupicides, ovicides, and adulticidal from plants to kill or repel mosquito. In this chapter, we focused on the current information on sources of phytochemicals and their mosquitocidal activity to reduce the mosquito population, larvicidal activity at various instar stage specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarthi N, Murugan K (2012) Effect of Vetiveria zizanioides L. root extracts on the malarial vector, Anopheles stephensi Liston. Asian Pacific J Tropical Dis 2(2):154–158

    Article  Google Scholar 

  • Abirami D, Murugan K (2011) HPTLC quantification of flavonoids, larvicidal and smoke repellent activities of Cassia occidentalis L.(Caesalpiniaceae) against malarial vectore Anopheles stephensi Lis (Diptera: Culicidae). J Phytology 3(2):60–71

    Google Scholar 

  • Akinkurolere RO, Adedire CO, Odeyemi OO (2011) Bioefficacy of extracts of some indigenous Nigerian plants on the developmental stages of mosquito (Anopheles gambiae). Jordan J Biol Sci 147(622):1–6

    Google Scholar 

  • Al-Mekhlafi FA (2018) Larvicidal, ovicidal activities and histopathological alterations induced by Carum copticum (Apiaceae) extract against Culex pipiens (Diptera: Culicidae). Saudi J Biol Sci 25(1):52–56

    Article  PubMed  Google Scholar 

  • Anees AM (2008) Larvicidal activity of Ocimum sanctum Linn.(Labiatae) against Aedes aegypti (L.) and Culex quinquefasciatus (say). Parasitol Res 103(6):1451–1453

    Article  PubMed  Google Scholar 

  • Arivoli S, Tennyson S (2011) Larvicidal and adult emergence inhibition activity of Abutilon indicum (Linn.)(Malvaceae) leaf extracts against vector mosquitoes (Diptera: Culicidae). J Biopest 4(1):27

    Google Scholar 

  • Azmi MA, Naqvi SNH, Ahmad I, Tabassum R, Anbreen B (1998) Toxicity of neem leaves extracts (NLX) compared with malathion (57 E.C.) against late 3rd instar larvae of Culex fatigans (Wild strain) by WHO method. Truk J Zool 22(3):213–218

    Google Scholar 

  • Bagavan A, Kamaraj C, Rahuman AA, Elango G, Zahir AA, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii glover. Parasitol Res 104(5):1109–1117

    Article  CAS  PubMed  Google Scholar 

  • Baranitharan M, Sawicka B, Gokulakrishnan J (2019) Phytochemical profiling and larval control of Erythrina variegata methanol fraction against malarial and filarial vector. Adv Prev Med 2019:2641959

    Article  PubMed  PubMed Central  Google Scholar 

  • Benelli G, Canale A, Toniolo C, Higuchi A, Murugan K, Pavela R, Nicoletti M (2017) Neem (Azadirachta indica): Towards the ideal insecticide? Nat Prod Res 31(4):369–386

    Article  CAS  PubMed  Google Scholar 

  • Briones AV, Garbo AG (2016) Bioactivity of the aqueous and ethanolic extracts/pellet form of Philippine Piper nigrum L. on the duration of egg, larval and pupal development stages of Aedes aegypti mosquitoes. J Entomol Zool Stud 4(6):196–202

    Google Scholar 

  • Candido LP, Cavalcanti MT, Beserra EB (2013) Bioactivity of plant extracts on the larval and pupal stages of Aedes aegypti (Diptera, Culicidea). Rev Soc Bras Med Trop 46(4):420–425

    Article  PubMed  Google Scholar 

  • Carpenter SJ, La Casse WJ (1974) Mosquitoes of North America (north of Mexico). Univ of California Press, California

    Google Scholar 

  • Chaithong U, Choochote W, Kamsuk K, Jitpakdi A, Tippawangkosol P, Chaiyasit D, Champakaew D, Tuetun B, Pitasawat B (2006a) Larvicidal effect of pepper plants on Aedes aegypti (L.) (Diptera: Culicidae). J Soc Vector Ecol 31(1):138–144. https://doi.org/10.3376/1081-1710(2006)31[138:leoppo]2.0.co;2

    Article  Google Scholar 

  • Chaithong U, Choochote W, Kamsuk K, Jitpakdi A, Tippawangkosol P, Chaiyasit D, Champakaew D, Tuetun B, Pitasawat B (2006b) Larvicidal effect of pepper plants on Aedes aegypti (L.)(Diptera: Culicidae). J Vector Ecol 31(1):138–144

    Article  PubMed  Google Scholar 

  • Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30(2):195

    PubMed  Google Scholar 

  • Chapman HC (1974) Biological control of mosquito larvae. Annu Rev Entomol 19(1):33–59

    Article  CAS  PubMed  Google Scholar 

  • Choochote W, Tuetun B, Kanjanapothi D, Rattanachanpichai E, Chaithong U, Chaiwong P, Jitpakdi A, Tippawangkosol P, Riyong D, Pitasawat B (2004) Potential of crude seed extract of celery, Apium graveolens L., against the mosquito Aedes aegypti (L.)(Diptera: Culicidae). J Soc Vector Ecol 29(2):340–346

    Google Scholar 

  • Chore JK, Obonyo M, Wachira FN, Mireji PO (2014) Larvicidal activity of selected Aloe species against Aedes aegypti (Diptera: Culiciade). J Insect Sci 14(1):202

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury N, Ghosh A, Chandra G (2008a) Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complement Altern Med 8(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury N, Laskar S, Chandra G (2008b) Mosquito larvicidal and antimicrobial activity of protein of Solanum villosum leaves. BMC Complement Altern Med 8(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Danga Y, Nukenine E, Younoussa L, Esimone C (2014) Phytochemicals and larvicidal activity of Plectranthus glandulosus (Lamiaceae) leaf extracts against Anopheles gambiae, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). J Pure Appl Zool 2(2):160–171

    Google Scholar 

  • De Omena M, Navarro D, De Paula J, Luna J, De Lima MF, Sant’Ana A (2007) Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol 98(13):2549–2556

    Article  PubMed  CAS  Google Scholar 

  • Dhaliwal G, Arora R (2000) Role of phytochemicals in integrated pest management. In: Phytochemical biopesticides. CRC Press, London, pp 92–109

    Google Scholar 

  • Dhanasekaran S, Krishnappa K, Anandan A, Elumalai K (2013) Larvicidal, ovicidal and repellent activity of selected indigenous medicinal plants against malarial vector Anopheles stephensi (Liston), dengue vector Aedes aegypti (Linn.), Japanese encephalitis vector, Culex tritaeniorynchus (Giles.)(Diptera: Culicidae). J Agric Technol 9(1):29–47

    Google Scholar 

  • Elangovan A, Dhanasekaran S, Anandan A, Krishnappa K, Gokulakrishnan J, Elumalai K (2012) Larvicidal and ovicidal activities of Exacum pedunculatum (Linn.)(Gentinaceae) against a common malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Intl J Recent Scientific Res 3(6):559–563

    Google Scholar 

  • Elumalai D, Hemalatha P, Kaleena PK (2015) Larvicidal activity and GC-MS analysis of Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Saudi Soc Agric Sci 16:306–313. https://doi.org/10.1016/j.jssas.2015.10.003

  • Elumalai D, Hemalatha P, Kaleena P (2017a) Larvicidal activity and GC–MS analysis of Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Saudi Soc Agric Sci 16(4):306–313

    Google Scholar 

  • Elumalai D, Hemalatha P, Kaleena PK (2017b) Larvicidal activity and GC–MS analysis of Leucas aspera against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. J Saudi Soc Agric Sci 16(4):306–313. https://doi.org/10.1016/j.jssas.2015.10.003

  • Fang J (2010) Ecology: a world without mosquitoes. Nature News 466(7305):432–434

    Article  CAS  Google Scholar 

  • Farnesi LC, Vargas HC, Valle D, Rezende GL (2017) Darker eggs of mosquitoes resist more to dry conditions: Melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Negl Trop Dis 11(10):e0006063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D, Norelli S, Valle G, Nisini R, Beninati S (2019) Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int 2019:8748253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh A, Chandra G (2006) Biocontrol efficacy of Cestrum diurnum L.(Solanaceae: Solanales) against the larval forms of Anopheles stephensi. Nat Prod Res 20(04):371–379

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2008) Laboratory evaluation of a phytosteroid compound of mature leaves of day jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms. Parasitol Res 103(2):271–277

    Article  PubMed  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135(5):581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girmay K, Fikre B, Asmelash A, Getachew B, Tekle E, Raja N (2014) Evaluation of water and ethanol extracts of Schinus molle Linn. Against immature Culex quinquefasciatus say (Diptera: Culicidae). J Coast Life Med 2(6):471–477

    Google Scholar 

  • Gnankiné O, Bassolé IHN (2017) Essential oils as an alternative to pyrethroids’ resistance against Anopheles species complex giles (Diptera: Culicidae). Molecules 22(10):1321

    Article  PubMed Central  CAS  Google Scholar 

  • Govindarajan M, Sivakumar R (2014) Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.)(family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae). Parasitol Res 113(4):1435–1449

    Article  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008) Studies on effect of Acalypha indica L.(Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103(3):691

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu B, Srimathi A, Bhuvana R, Karthikeyan J (2015) Mosquito larvicidal efficacy of the leaf extracts of Annona reticulata against Aedes aegypti. Int J Curr Microbiol App Sci 4(8):131–140

    Google Scholar 

  • Gumel A, Dogara M (2018) A review on filaricidal activity of phytochemical extracts against filariasis and the parasites genomic diversity. Int J Clin Microbiol Biochem Technol 1:024–032

    Article  Google Scholar 

  • Hamid NS, Kahil MA, Ibrahim NA (2016) Larvicidal activity of ethanol extract of Citrullus colocynthis seed and fruit pulp against Anopheles arabiensis and Culex quinquefasciatus. J Med Plants Stud 4(6):252–255

    Google Scholar 

  • Holm L, Weldon L, Blackburn R (1969) Aquatic weeds. Science 166(3906):699–709

    Article  CAS  PubMed  Google Scholar 

  • Iannacone J, Pérez D (2004) Insecticidal effect of Paullinia clavigera var. bullata Simpson (Sapindaceae) and Tradescantia zebrina Hort ex Bosse (Commelinaceae) in the control of Anopheles benarrochi Gabaldon, Cova García & López 1941, main vector of malaria in Ucayali, Peru. Ecol Aplicada 3:64–72

    Google Scholar 

  • Ileke K, Adesina F (2018) Bioefficacy of larvicidal and pupicidal properties of Clerodendrum capitatum and Bridelia machrantha leaves extracts against malaria vector, Anopheles gambiae giles (Diptera: Culicidae). J Biol Med 2:007–011

    Google Scholar 

  • Imam MH, Riaz Z, Sofi G (2013) Evaluation of mosquito larvicidal effect of Nagarmotha (Cyperus rotundus) extracts against Aedes aegypti L. larvae. Int J Green Pharm (IJGP) 7:1

    Google Scholar 

  • Jang Y-S, Baek B-R, Yang Y-C, Kim M-K, Lee H-S (2002) Larvicidal activity of leguminous seeds and grains against Aedes aegypti and Culex pipiens pallens. J Am Mosq Control Assoc 18(3):210–213

    PubMed  Google Scholar 

  • Jang Y-S, Jeon J-H, Lee H-S (2005) Mosquito larvicidal activity of active constituent derived from Chamaecyparis obtusa leaves against 3 mosquito species. J Am Mosq Control Assoc 21(4):400–403

    Article  CAS  PubMed  Google Scholar 

  • Kabaru J, Gichia L (2001) Insecticidal activity of extracts derived from different parts of the mangrove tree Rhizophora mucronata (Rhizophoraceae) Lam. against three arthropods. Afr J Sci Technol 2:2

    Google Scholar 

  • Kalu I, Ofoegbu U, Eroegbusi J, Nwachukwu C, Ibeh B (2010) Larvicidal activities of ethanol extract of Allium sativum (garlic bulb) against the filarial vector, Culex quinquefasciatus. J Med Plant Res 4(6):496–498

    Google Scholar 

  • Kamalakannan S, Madhiyazhagan P, Dhandapani A, Murugan K, Barnard D (2010) Pedilanthus tithymaloides (Euphorbiaceae) leaf extract phytochemicals: toxicity to the filariasis vector Culex quinquefasciatus (Diptera: Culicidae). Vector-Borne Zoonotic Dis 10(8):817–820

    Article  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA (2010) Larvicidal and adulticidal potential of medicinal plant extracts from South India against vectors. Asian Pac J Trop Med 3(12):948–953

    Article  Google Scholar 

  • Kamaraj C, Bagavan A, Elango G, Zahir AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Rahuman AA (2011) Larvicidal activity of medicinal plant extracts against Anopheles subpictus&Culex tritaeniorhynchus. Indian J Med Res 134(1):101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V (2007) Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res 101(6):1721–1723

    Article  PubMed  Google Scholar 

  • Koul O, Walia S (2009) Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. CAB Rev 4:049. https://doi.org/10.1079/PAVSNNR20094049

    Article  CAS  Google Scholar 

  • Kovendan K, Murugan K, Panneerselvam C, Aarthi N, Kumar PM, Subramaniam J, Amerasan D, Kalimuthu K, Vincent S (2012a) Antimalarial activity of Carica papaya (family: Caricaceae) leaf extract against Plasmodium falciparum. Asian Pacific J Tropical Dis 2:S306–S311

    Article  Google Scholar 

  • Kovendan K, Murugan K, Vincent S (2012b) Evaluation of larvicidal activity of Acalypha alnifolia Klein ex Willd.(Euphorbiaceae) leaf extract against the malarial vector, Anopheles stephensi, dengue vector, Aedes aegypti and Bancroftian filariasis vector, Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 110(2):571–581

    Article  PubMed  Google Scholar 

  • Krishnappa K, Dhanasekaran S, Elumalai K (2012) Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.)(Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera). Asian Pac J Trop Med 5(8):598–604

    Article  PubMed  Google Scholar 

  • Kumar PM, Murugan K, Kovendan K, Subramaniam J, Amaresan D (2012) Mosquito larvicidal and pupicidal efficacy of Solanum xanthocarpum (family: Solanaceae) leaf extract and bacterial insecticide, Bacillus thuringiensis, against Culex quinquefasciatus say (Diptera: Culicidae). Parasitol Res 110(6):2541–2550

    Article  Google Scholar 

  • Lalchhandama K (2011) Mosquitocidal activity of Millettia pachycarpa on the larvae and eggs of Aedis aegypti. Ann Biol Res 2(3):217–222

    Google Scholar 

  • Macêdo ME, Consoli RA, Grandi TS, Anjos AM, Oliveira AB, Mendes NM, Queiróz RO, Zani CL (1997) Screening of Asteraceae (Compositae) plant extracts for larvicidal activity against Aedes fluviatilis (Diptera: Culicidae). Mem Inst Oswaldo Cruz 92:565–570

    Article  PubMed  Google Scholar 

  • Mandal S (2010) Exploration of larvicidal and adult emergence inhibition activities of Ricinus communis seed extract against three potential mosquito vectors in Kolkata, India. Asian Pac J Trop Med 3(8):605–609

    Article  Google Scholar 

  • Manimegalai K, Sukanya S (2014) Biology of the filarial vector, Culex quinquefasciatus (Diptera: Culicidae). Int J Curr Microbiol App Sci 3(4):718–724

    Google Scholar 

  • Mansour S, Messeha S, El-Gengaihi S (2000) Botanical biocides. 4. Mosquitocidal activity of certain Thymus capitatus constituents. J Nat Toxins 9(1):49–62

    Google Scholar 

  • Markouk M, Bekkouche K, Larhsini M, Bousaid M, Lazrek H, Jana M (2000) Evaluation of some Moroccan medicinal plant extracts for larvicidal activity. J Ethnopharmacol 73(1–2):293–297

    Article  CAS  PubMed  Google Scholar 

  • Matasyoh JC, Wathuta EM, Kariuki ST, Chepkorir R, Kavulani J (2008) Aloe plant extracts as alternative larvicides for mosquito control. Afr J Biotechnol 7:7

    Google Scholar 

  • Maurya P, Mohan L, Sharma P, Batabyal L, Srivastava C (2007) Larvicidal efficacy of Aloe barbadensis and Cannabis sativa against the malaria vector Anopheles stephensi (Diptera: Culicidae). Entomol Res 37(3):153–156

    Article  Google Scholar 

  • Maurya P, Sharma P, Mohan L, Batabyal L, Srivastava C (2009) Evaluation of the toxicity of different phytoextracts of Ocimum basilicum against Anopheles stephensi and Culex quinquefasciatus. J Asia Pac Entomol 12(2):113–115

    Article  Google Scholar 

  • Mendoza N, Silva EME (2018) Introduction to phytochemicals: secondary metabolites from plants with active principles for pharmacological importance. In: Phytochemicals: source of antioxidants and role in disease prevention. IntechOpen, London, p 25

    Google Scholar 

  • Mgbemena I (2010) Comparative evaluation of larvicidal potentials of three plant extracts on Aedes aegypti. J Am Sci 6(10):435–440

    Google Scholar 

  • Modise SA, Ashafa AOT (2016) Larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus, Foeniculum vulgare and Tagetes minuta against Culex quinquefasciatus mosquitoes. Tropical J Pharm Res 15(5):965–972

    Article  CAS  Google Scholar 

  • Mohan D, Ramaswamy M (2007) Evaluation of larvicidal activity of the leaf extract of a weed plant, Ageratina adenophora, against two important species of mosquitoes, Aedes aegypti and Culex quinquefasciatus. Afr J Biotechnol 6:5

    Google Scholar 

  • Mohan L, Sharma P, Srivastava C (2006) Evaluation of Solanum xanthocarpum extract as a synergist for cypermethrin against larvae of the filarial vector Culex quinquefasciatus (say). Entomol Res 36(4):220–225

    Article  Google Scholar 

  • Mullai K, Jebanesan A, Pushpanathan T (2008) Mosquitocidal and repellent activity of the leaf extract of Citrullus vulgaris (cucurbitaceae) against the malarial vector, Anopheles stephensi liston (diptera culicidae). Eur Rev Med Pharmacol Sci 12(1):1

    CAS  PubMed  Google Scholar 

  • Murray NEA, Quam MB, Wilder-Smith A (2013) Epidemiology of dengue: past, present and future prospects. Clin Epidemiol 5:299

    PubMed  PubMed Central  Google Scholar 

  • Murugan K, Kovendan K, Vincent S, Barnard DR (2012a) Biolarvicidal and pupicidal activity of Acalypha alnifolia Klein ex Willd.(family: Euphorbiaceae) leaf extract and microbial insecticide, Metarhizium anisopliae (Metsch.) against malaria fever mosquito, Anopheles stephensi Liston.(Diptera: Culicidae). Parasitol Res 110(6):2263–2270

    Article  PubMed  Google Scholar 

  • Murugan K, Kumar PM, Kovendan K, Amerasan D, Subrmaniam J, Hwang J-S (2012b) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111(4):1757–1769

    Article  PubMed  Google Scholar 

  • Musau JK, Mbaria JM, Nguta JM, Mathiu M, Kiama SG (2016) Phytochemical composition and larvicidal properties of plants used for mosquito control in Kwale County, Kenya. Int J Mosquito Res 3(3):12–17

    Google Scholar 

  • Okal MN, Lindh JM, Torr SJ, Masinde E, Orindi B, Lindsay SW, Fillinger U (2015) Analysing the oviposition behaviour of malaria mosquitoes: design considerations for improving two-choice egg count experiments. Malar J 14(1):250

    Article  PubMed  PubMed Central  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM (2012) Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Artemisia nilagirica (family: Compositae) against Anopheles stephensi and Aedes aegypti. Parasitol Res 111(6):2241–2251

    Article  PubMed  Google Scholar 

  • Panneerselvam C, Murugan K, Kovendan K, Kumar PM, Subramaniam J (2013) Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn.(family: Euphorbiaceae) and Bacillus sphaericus against Anopheles stephensi Liston.(Diptera: Culicidae). Asian Pac J Trop Med 6(2):102–109

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Cortel MRB, Cabantog RJR, Caasi PM, Ching CAD, Perez JBS, Godisan PGM, Latorre CMG, Lucero DR, Salonga RB (2019) Larvicidal and ovicidal activities of Artocarpus blancoi extracts against Aedes aegypti. Pharm Biol 57(1):120–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar K, Jebanesa A (2004) Larvicidal efficacy of some cucurbitacious plant leaf extracts against Culex quinquefasciatus. Bioresour Technol 95:113–114

    Article  CAS  Google Scholar 

  • Pratheeba T, Ragavendran C, Natarajan D (2015) Larvicidal, pupicidal and adulticidal potential of Ocimum gratissimum plant leaf extracts against filariasis inducing vector. Int J Mosquito Res 2(2):01–08

    Google Scholar 

  • Raghavendra K, Singh S, Subbarao SK, Dash A (2009) Laboratory studies on mosquito larvicidal efficacy of aqueous & hexane extracts of dried fruit of Solanum nigrum Linn. Indian J Med Res 130(1):74

    CAS  PubMed  Google Scholar 

  • Raghavendra B, Prathibha K, Vijayan V (2013) Synergistic effect of Eugenia jambolana Linn. And Solidago canadensis Linn. leaf extracts with deltamethrin against the dengue vector Aedes aegypti Linn. at Mysore. Environ Sci Pollut Res 20(6):3830–3835

    Article  CAS  Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103(1):133

    Article  PubMed  Google Scholar 

  • Rajakumar G, Marimuthu S, Santhoshkumar T (2010) Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Trop Biomed 27(2):211–219

    PubMed  Google Scholar 

  • Rajkumar S, Jebanesan A (2005) Larvicidal and adult emergence inhibition effect of Centella asiatica Brahmi (Umbelliferae) against mosquito Culex quinquefasciatus say (Diptera: Culicidae). Afr J Biomed Res 8(1):31–33

    Google Scholar 

  • Rajkumar S, Jebanesan A (2009) Larvicidal and oviposition activity of Cassia obtusifolia Linn (family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 104(2):337–340

    Article  CAS  PubMed  Google Scholar 

  • Raveen R, Ahmed F, Pandeeswari M, Reegan D, Tennyson S, Arivoli S, Jayakumar M (2017) Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal and pupicidal activity against medically important human dengue, chikungunya and zika virus vector, Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). Int J Mosq Res 4(4):17–28

    Google Scholar 

  • Rawani A, Haldar KM, Ghosh A, Chandra G (2009) Larvicidal activities of three plants against filarial vector Culex quinquefasciatus say (Diptera: Culicidae). Parasitol Res 105(5):1411

    Article  PubMed  Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2010) Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res 107(5):1235–1240

    Google Scholar 

  • Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L.(Solanaceae: Solanales). Acta Trop 128(3):613–622

    Article  CAS  PubMed  Google Scholar 

  • Rawani A, Ghosh A, Laskar S, Chandra G (2014) Glucosinolate from leaf of Solanum nigrum L.(Solanaceae) as a new mosquito larvicide. Parasitol Res 113(12):4423–4430

    Article  PubMed  Google Scholar 

  • Rezza G (2014) Dengue and chikungunya: Long-distance spread and outbreaks in naïve areas. Pathogens Global Health 108(8):349–355

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadiq MB, Tharaphan P, Chotivanich K, Tarning J, Anal AK (2017) In vitro antioxidant and antimalarial activities of leaves, pods and bark extracts of Acacia nilotica (L.) Del. BMC Complement Altern Med 17(1):372

    Google Scholar 

  • Saha N, Aditya G, Banerjee S, Saha GK (2012) Predation potential of odonates on mosquito larvae: Implications for biological control. Biological Contr 63(1):1–8

    Article  Google Scholar 

  • Senthil-Nathan S (2019) A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front Physiol 10:1591

    Article  PubMed  Google Scholar 

  • Shaalan EA-S, Canyon D, Younes MWF, Abdel-Wahab H, Mansour A-H (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31(8):1149–1166

    Article  CAS  PubMed  Google Scholar 

  • Shaalan EA, Canyon DV, Younes MW, Abdel-Wahab H, Mansour A-H (2006) Efficacy of eight larvicidal botanical extracts from Khaya senegalensis and Daucus carota against Culex annulirostris. J Am Mosq Control Assoc 22(3):433–436

    Article  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava C (2006) Phytoextract-induced developmental deformities in malaria vector. Bioresour Technol 97(14):1599–1604

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar M, Srinivasan R, Natarajan D (2012) Bioefficacy of Biophytum sensitivum (L.) leaf extracts against dengue mosquito vector Aedes aegypti (L.). Res J Pharmaceut Biol Chem Sci 3(3):885–892

    Google Scholar 

  • Singh R, Dhiman R, Mittal P (2006) Mosquito larvicidal properties of Momordica charantia Linn (family: Cucurbitaceae). J Vector Borne Dis 43(2):88

    CAS  PubMed  Google Scholar 

  • Singh R, Dhiman R, Mittal P (2007) Studies on mosquito larvicidal properties of Eucalyptus citriodora hook (family-Myrtaceae). J Commun Dis 39(4):233–236

    CAS  PubMed  Google Scholar 

  • Souza R, Virginio F, Suesdek L, Barufi JB, Genta FA (2019) Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front Physiol 10:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Subashini K, Sivakami R, Jeyasankar A (2017) Phytochemical screening and ovicidal activity of Scutellaria violacea (Lamiaceae) leaf extract against vector mosquitoes (Diptera: Culicidae). Int J Adv Res Biol Sci 4(3):152–158

    Article  CAS  Google Scholar 

  • Sumroiphon S, Yuwaree C, Arunlertaree C, Komalamisra N, Rongsriyam Y (2006) Bioactivity of citrus seed for mosquito-borne diseases larval control. Southeast Asian J Trop Med Public Health 37:123–127

    PubMed  Google Scholar 

  • Swathi S, Murugananthan G, Ghosh S, Pradeep A (2012) Larvicidal and repellent activities of ethanolic extract of Datura stramonium leaves against mosquitoes. Int J Pharm Phytochem Res 4(1):25–27

    Google Scholar 

  • Thu HM, Aye KM, Thein S (1998) The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitos. Southeast Asian J Trop Med Public Health 29(2):280–284

    CAS  PubMed  Google Scholar 

  • Tyagi B, Munirathinam A, Venkatesh A (2015) A catalogue of Indian mosquitoes. Int J Mosquito Res 2(2):50–97

    Google Scholar 

  • Umar A, Kela S, Ogidi S, Asadabe J (2006) Susceptibility of Aedes aegypti pupae to neem seed kernal extracts. Animal Res Int 3(1):403–406

    Google Scholar 

  • Unnikrishnan G (2014) Larvicidal and pupicidal activity of Terminalia catappa leaf extracts on Aedes aegypti mosquito: A vector intervention. IOSR J Pharm Biol Sci 9(2):58–63

    Google Scholar 

  • Valentina J, Poonguzhali T, Josmin L, Nisha L (2015) Mosquito larvicidal and pupicidal activity of seaweed extracts against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. Int J Mosq Res 2(4):54–59

    Google Scholar 

  • Vijaya K, Panagal M, Bastin J, Gosh R (2012) Mosquito larvicidal, oviposition deterrent and repellent properties of Acalypha indica L extracts against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Int J Med Biosci 1(3):33–41

    Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, Geneva

    Google Scholar 

  • Xia H, Wang Y, Atoni E, Zhang B, Yuan Z (2018) Mosquito-associated viruses in China. Virol Sin 33(1):5–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav R, Srivastava V, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

  • Yogananth N, Buvaneswari S, Muthezhilan R (2012) Larvicidal and antibacterial activities of different solvent extracts of Solanum nigrum LINN. Global J Biotech Biochem 7(3):86–89

    Google Scholar 

  • Zhao MP, Liu QZ, Liu Q, Liu ZL (2017) Identification of larvicidal constituents of the essential oil of Echinops grijsii roots against the three species of mosquitoes. Molecules 22(2):205

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Tapan Kumar Barik, Department of Zoology, Berhampur University for his unconditional guide to write and design this piece of manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, B., Behera, C., Nayak, R., Jena, M. (2020). Use of Phytochemicals: A Promising and Eco-Friendly Approach for the Management of Mosquito Vector Populations. In: Barik, T.K. (eds) Molecular Identification of Mosquito Vectors and Their Management. Springer, Singapore. https://doi.org/10.1007/978-981-15-9456-4_4

Download citation

Publish with us

Policies and ethics