Skip to main content

Introduction to PVA-Based Bionanocomposite Films

  • Chapter
  • First Online:
Multiscaled PVA Bionanocomposite Films

Abstract

Biopolymers have gained their great popularity over synthetic polymers since conventional non-recyclable polymeric wastes are easily accumulated to negatively impact environmental sustainability and ecological systems. Polyvinyl alcohol (PVA), in possession of some favourable characteristics of good recyclability and biotribological properties, can be widely used in biotechnological applications, which is deemed as one of popular water-soluble and ecofriendly biopolymers. Nonetheless, it is also worth mentioning that insufficient thermal and mechanical properties of such biopolymers inevitably make them less competitive as opposed to commercially available synthetic polymers. Such material demerits of PVA can be overcome by reinforcing a variety of nanoreinforcements consisting of carbon nanotubes (CNTs), halloysite nanotubes (HNTs) and nanoclays in order to generate new nanocomposite systems for enhancing overall material performance. This chapter elaborates preparation, characterisation and properties of different PVA bionanocomposites reinforced with layered silicates, HNTs and BCs, as well as other popular fillers to gain the insight of their wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):1–6

    Article  Google Scholar 

  2. Reddy MM, Misra M, Mohanty AK (2012) Bio-based materials in the new bio-economy. Chem Eng Prog 108(5):37–42

    Google Scholar 

  3. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122

    Article  Google Scholar 

  4. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  Google Scholar 

  5. Robyt JF (2008) Starch: structure, properties, chemistry, and enzymology. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience: chemistry and chemical biology. Springer, Berlin, pp 1437–1472

    Chapter  Google Scholar 

  6. Eagan JM, Xu J, Di Girolamo R, Thurber CM, Macosko CW, LaPointe AM, Bates FS, Coates GW (2017) Combining polyethylene and polypropylene: enhanced performance with PE/iPP multiblock polymers. Science 355(6327):814–816

    Article  ADS  Google Scholar 

  7. Xanthos D, Walker TR (2017) International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar Pollut Bull 118(1–2):17–26

    Article  Google Scholar 

  8. Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci Part C: Polym Rev 44(3):231–274

    Article  Google Scholar 

  9. Huang D, Wang A (2013) Non-covalently functionalized multiwalled carbon nanotubes by chitosan and their synergistic reinforcing effects in PVA films. RSC Adv 3(4):1210–1216

    Article  Google Scholar 

  10. Pan Y-S, Xiong D-S, Ma R-Y (2007) A study on the friction properties of poly (vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear 262(7–8):1021–1025

    Article  Google Scholar 

  11. Espinosa HD, Rim JE, Barthelat F, Buehler MJ (2009) Merger of structure and material in nacre and bone–Perspectives on de novo biomimetic materials. Prog Mater Sci 54(8):1059–1100

    Article  Google Scholar 

  12. Sapalidis AA, Katsaros FK, Kanellopoulosm NK (2011) PVA/montmorillonite nanocomposites: development and properties. In: Cuppoletti J (ed) Nanocomposites and polymers with analytical methods. InTech, Rijeka, pp 29–50

    Google Scholar 

  13. Jose T, George SC, Maria HJ, Wilson R, Thomas S (2014) Effect of bentonite clay on the mechanical, thermal, and pervaporation performance of the poly (vinyl alcohol) nanocomposite membranes. Ind Eng Chem Res 53(43):16820–16831

    Article  Google Scholar 

  14. Fujii K, Nakagaito AN, Takagi H, Yonekura D (2014) Sulfuric acid treatment of halloysite nanoclay to improve the mechanical properties of PVA/halloysite transparent composite films. Compos Interfaces 21(4):319–327

    Article  Google Scholar 

  15. Khoo W, Ismail H, Ariffin A (2013) Tensile, swelling, and oxidative degradation properties of crosslinked polyvinyl alcohol/chitosan/halloysite nanotube composites. Int J Polym Mater Polym Biomater 62(7):390–396

    Article  Google Scholar 

  16. Qiu K, Netravali AN (2013) Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polym Compos 34(5):799–809

    Article  Google Scholar 

  17. Du F-P, Ye EZ, Yang W, Shen TH, Tang CY, Xie XL, Zhou XP, Law WC (2015) Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compos Part B Eng 68:170–175

    Article  Google Scholar 

  18. Minus ML, Chae HG, Kumar S (2009) Interfacial crystallization in gel-spun poly (vinyl alcohol)/single-wall carbon nanotube composite fibers. Macromol Chem Phy 210(21):1799–1808

    Article  Google Scholar 

  19. Thayumanavan N, Tambe P, Joshi G (2015) Effect of surfactant and sodium alginate modification of graphene on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Cellul Chem Technol 49:69–80

    Google Scholar 

  20. Li YQ, Yu T, Yang TY, Zheng LX, Liao K (2012) Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv Mater 24(25):3426–3431

    Article  Google Scholar 

  21. Cheng Q, Wang S, Tong Z (2015) Poly (vinyl alcohol) cellulose nanocomposites. In: Kar KK, Pandey, JK, Rana SK (eds) in Handbook of polymer nanocomposites. Processing, performance and application, volume C: polymer nanocomposites of cellulose nanoparticles. Springer, Berlin, pp 433–447

    Google Scholar 

  22. Leitão AF, Silva J, Dourado F, Gama M (2013) Production and characterization of a new bacterial cellulose/poly (vinyl alcohol) nanocomposite. Materials 6(5):1956–1966

    Article  ADS  Google Scholar 

  23. Ren W, Wu R, Guo P, Zhu J, Li H, Xu S, Wang J (2015) Preparation and characterization of covalently bonded PVA/Laponite/HAPI nanocomposite multilayer freestanding films by layer-by-layer assembly. J Polym Sci, Part B: Polym Phys 53(8):545–551

    Article  ADS  Google Scholar 

  24. Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly (vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44(11):4415–4421

    Article  ADS  Google Scholar 

  25. Mousa M, Dong Y (2020) Polymeric materials as bionanocomposites. In: Zai KM, Jabeen F, Anjum MN, Ikram S (eds) Bionanocomposites: green synthesis and applications. Elsevier, Kidlington, pp 335–365

    Chapter  Google Scholar 

  26. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) High-nanofiller-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater 20(19):3322–3329

    Article  Google Scholar 

  27. Liao P, Ismael ZM, Zhang W, Yuan S, Tong M, Wang K, Bao J (2012) Adsorption of dyes from aqueous solutions by microwave modified bamboo charcoal. Chem Eng J 195:339–346

    Article  Google Scholar 

  28. Singh K, Singh RS, Rai BN, Upadhyay SN (2010) Biofiltration of toluene using wood charcoal as the biofilter media. Bioresource Technol 101(11):3947–3951

    Article  Google Scholar 

  29. Asada T, Ohkubo T, Kawata K, Oikawa K (2006) Ammonia adsorption on bamboo charcoal with acid treatment. J Health Sci 52(5):585–589

    Article  Google Scholar 

  30. Lou C-W, Lin CW, Lei CH, Su KH, Hsu CH, Liu ZH, Lin JH (2007) PET/PP blend with bamboo charcoal to produce functional composites. J Mater Process Technol 192–193:428–433

    Article  Google Scholar 

  31. Ho M-P, Lau K-T, Wang H, Hui D (2015) Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos Part B Eng 81:14–25

    Article  Google Scholar 

  32. Yeh JT, Hsiung HH, Wei W, Zhu P, Chen KN, Jiang T (2009) Negative air ion releasing properties of tourmaline/bamboo charcoal compounds containing ethylene propylene diene terpolymer/polypropylene composites. J Appl Polym Sci 113(2):1097–1110

    Article  Google Scholar 

  33. Zhao R-S, Wang X, Yuan JP, Lin JM (2008) Investigation of feasibility of bamboo charcoal as solid-phase extraction adsorbent for the enrichment and determination of four phthalate esters in environmental water samples. J Chromatogr A 1183(1–2):15–20

    Article  Google Scholar 

  34. Li X, Lin Z, Huang L, Tan S, Cai X (2014) The utilization of bamboo charcoal enhances wood plastic composites with excellent mechanical and thermal properties. Mater Design 53:419–424

    Article  Google Scholar 

  35. Nitayaphat W, Jiratumnukul N, Charuchinda S, Kittinaovarat S (2009) Mechanical properties of chitosan/bamboo charcoal composite films made with normal and surface oxidized charcoal. Carbohydr Polym 78(3):444–448

    Article  Google Scholar 

  36. Yang F-C, Wu KH, Lin WP, Hu MK (2009) Preparation and antibacterial efficacy of bamboo charcoal/polyoxometalate biological protective material. Microporous Mesoporous Mater 118(1–3):467–472

    Article  Google Scholar 

  37. Kamada K (2008) Study on healthy housing using recycled organic industrial waste first report: overview of trends in the development of the latest technology and new materials in Japan. No. 32, Hokkaido Bunkyo University, pp 1–17

    Google Scholar 

  38. Wu J, Wei Y, Lin J, Lin S (2003) Preparation of a starch-graft-acrylamide/kaolinite superabsorbent composite and the influence of the hydrophilic group on its water absorbency. Polym Int 52(12):1909–1912

    Article  Google Scholar 

  39. Lin J, Wu J, Yang Z, Pu M (2001) Synthesis and properties of poly (acrylic acid)/mica superabsorbent nanocomposite. Macromol Rapid Commun 22(6):422–424

    Article  Google Scholar 

  40. Zhang F, Guo Z, Gao H, Li Y, Ren L, Shi L, Wang L (2005) Synthesis and properties of sepiolite/poly (acrylic acid-co-acrylamide) nanocomposites. Polym Bull 55(6):419–428

    Article  Google Scholar 

  41. Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly (acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131(1):39747

    Article  Google Scholar 

  42. Filippi S, Paci M, Polacco G, Dintcheva NT, Magagnini P (2011) On the interlayer spacing collapse of Cloisite® 30B organoclay. Polym Degrad Stab 96(5):823–832

    Article  Google Scholar 

  43. Tavares LL, Almeida CB, Caruso ÍP, Cornélio ML, Lopes Filho JF (2012) Effect of modified clays on the structure and functional properties of biofilms produced with zein. Food Sci Technol 32(2):314–322

    Article  Google Scholar 

  44. Rhim J-W, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433

    Article  Google Scholar 

  45. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  Google Scholar 

  46. Jem KJ, van der Pol JF, de Vos S (2010) Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. In: Chen GG-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 323–346

    Chapter  Google Scholar 

  47. Martin O, Averous L (2001) Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  Google Scholar 

  48. Ho KLG, Pometto AL, Gadea-Rivas A, Briceño JA, Rojas A (1999) Degradation of polylactic acid (PLA) plastic in Costa Rican soil and Iowa state university compost rows. J Environ Polym Degrad 7(4):173–177

    Article  Google Scholar 

  49. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. In: Albertsson A-C (ed) Degradable aliphatic polyesters. Springer, Berlin, pp 113–138

    Chapter  Google Scholar 

  50. Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly (3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25(9):2324–2329

    Google Scholar 

  51. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6(1):1–8

    Article  Google Scholar 

  52. Bastioli C, Cerutti A, Guanella I, Romano G, Tosin M (1995) Physical state and biodegradation behavior of starch-polycaprolactone systems. J Environ Polym Degrad 3(2):81–95

    Article  Google Scholar 

  53. Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41(11):4157–4167

    Article  Google Scholar 

  54. Koenig M, Huang S (1994) Evaluation of crosslinked poly (caprolactone) as a biodegradable, hydrophobic coating. Polym Degrad Stab 45(1):139–144

    Article  Google Scholar 

  55. Goldberg D (1995) A review of the biodegradability and utility of poly (caprolactone). J Enviro Polym Degrad 3(2):61–67

    Article  Google Scholar 

  56. Bastioli C (1998) Biodegradable materials—present situation and future perspectives. Macromol Symp 135(1):193–204

    Article  Google Scholar 

  57. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  Google Scholar 

  58. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  ADS  Google Scholar 

  59. Wolk SK, Swift G, Paik YH, Yocom KM, Smith RL, Simon ES (1994) One-and two-dimensional nuclear magnetic resonance characterization of poly (aspartic acid) prepared by thermal polymerization of L-aspartic acid. Macromolecules 27(26):7613–7620

    Article  ADS  Google Scholar 

  60. Hallensleben ML (1992) Polyvinyl compounds, others. In: Elvers B, Hawkins S, Schulz G (eds) Ullmann’s encyclopedia of industrial chemistry, vol A21. VCH Publishers, New York, pp 743–758

    Google Scholar 

  61. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res Part B Appl Biomater 100(5):1451–1457

    Article  Google Scholar 

  62. Finch CA (1973) Polyvinyl alcohol, properties and applications. Wiley, New York, pp 340–389

    Google Scholar 

  63. Oviedo IR, Méndez NN, Gómez MG, Rodríguez HC, Martínez AR (2008) Design of a physical and nontoxic crosslinked poly (vinyl alcohol) hydrogel. Int J Polym Mater 57(12):1095–1103

    Article  Google Scholar 

  64. Briscoe B, Luckham P, Zhu S (2000) The effects of hydrogen bonding upon the viscosity of aqueous poly (vinyl alcohol) solutions. Polymer 41(10):3851–3860

    Article  Google Scholar 

  65. Chang I-S, Kim C-I, Nam BU (2005) The influence of poly-vinyl-alcohol (PVA) characteristics on the physical stability of encapsulated immobilization media for advanced wastewater treatment. Process Biochem 40(9):3050–3054

    Article  Google Scholar 

  66. Hara C, Matsuo M (1995) Phase separation in aqueous poly (vinyl alcohol) solution. Polymer 36(3):603–609

    Article  Google Scholar 

  67. Liu M, Cheng R, Qian R (1995) Effect of solution concentration on the gelation of aqueous polyvinyl alcohol solution. J Polym Sci, Part B: Polym Phys 33(12):1731–1735

    Article  ADS  Google Scholar 

  68. Nozakura SI, Kida S (1974) Polymerization of vinyloxyaluminum and formation of syndiotactic poly (vinyl alcohol). J Polym Sci, Part A: Polym Chem 12(10):2337–2348

    ADS  Google Scholar 

  69. Napper D (1970) Flocculation studies of sterically stabilized dispersions. J Colloid Interf Sci 32(1):106–114

    Article  ADS  Google Scholar 

  70. Maeda H, Kawai T, Sekii S (1959) Intra-and intermolecular hydrogen bonds in polyvinyl alcohol solutions. J Polym Sci, Part A: Polym Chem 35(128):288–292

    ADS  Google Scholar 

  71. Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23(1–4):133–139

    Article  Google Scholar 

  72. Chiu C-W, Huang TK, Wang YC, Alamani BG, Lin JJ (2014) Intercalation strategies in clay/polymer hybrids. Progress Polym Sci 39(3):443–485

    Article  Google Scholar 

  73. Beyer G (2002) Nanocomposites: a new class of flame retardants for polymers. Plast Addit Compound 4(10):22–28

    Article  Google Scholar 

  74. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872

    Article  ADS  Google Scholar 

  75. Nuruzzaman M, Rahman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64(7):1447–1483

    Google Scholar 

  76. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63

    Article  Google Scholar 

  77. Francis CW (1973) Adsorption of polyvinylpyrrolidone on reference clay minerals. Soil Sci 115(1):40–54

    Article  ADS  Google Scholar 

  78. Aranda P, Ruiz-Hitzky E (1992) Poly (ethylene oxide)-silicate intercalation materials. Chem Mater 4(6):1395–1403

    Article  Google Scholar 

  79. Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng C 23(6–8):763–772

    Google Scholar 

  80. Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279(1):1–9

    Article  Google Scholar 

  81. Chin I-J, Thurn-Albrecht T, Kim H-C, Russell TP, Wang J (2001) On exfoliation of montmorillonite in epoxy. Polymer 42(13):5947–5952

    Article  Google Scholar 

  82. Xu L, Reeder S, Thopasridharan M, Ren J, Shipp DA, Krishnamoorti R (2005) Structure and melt rheology of polystyrene-based layered silicate nanocomposites. Nanotechnology 16(7):S514–S521

    Article  ADS  Google Scholar 

  83. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ (2001) Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer 42(24):9819–9826

    Article  Google Scholar 

  84. Kerr PF (1952) Formation and occurrence of clay minerals. Clays Clay Miner 1(1):19–32

    Article  ADS  Google Scholar 

  85. Rawtani D, Agrawal Y (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30(3):282–295

    Google Scholar 

  86. Guo B, Zou Q, Lei Y, Jia D (2009) Structure and performance of polyamide 6/halloysite nanotubes nanocomposites. Polym J 41(10):835–842

    Article  Google Scholar 

  87. Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59(5):574–582

    Article  Google Scholar 

  88. Lecouvet B, Horion J, D’haese C, Bailly C, Nysten B (2013) Elastic modulus of halloysite nanotubes. Nanotechnology 24(10):105704

    Google Scholar 

  89. Guimaraes L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C114 (26):11358–11363

    Google Scholar 

  90. Liu M, Guo B, Du M, Cai X, Jia D (2007) Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18(45):455703

    Google Scholar 

  91. Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57

    Google Scholar 

  92. Du M, Guo B, Wan J, Zou Q, Jia D (2010) Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res 17(1):109

    Article  Google Scholar 

  93. Ismail H, Salleh S, Ahmad Z (2013) Properties of halloysite nanotubes-filled natural rubber prepared using different mixing methods. Mater Design 50:790–797

    Article  Google Scholar 

  94. Wei W, Minullina R, Abdullayev E, Fakhrullin R, Mills D, Lvov Y (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4(1):488–494

    Article  Google Scholar 

  95. Yuan P, Tan D, Aannabi-Bergaya F, Yan W, Fan M, Liu D, He H (2012) Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays Clay Miner 60(6):561–753

    Article  ADS  Google Scholar 

  96. Hassan-Nejad M, Ganster J, Bohn A, Pinnow M, Volkert B (2009) Bio-based nanocomposites of cellulose acetate and nano-clay with superior mechanical properties. Macromol Symp 280(1):123–129

    Article  Google Scholar 

  97. Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D (2012) Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH). J Phys Chem C116(34):18230–18235

    Google Scholar 

  98. Liu M, Guo B, Zou Q, Du M, Jia D (2008) Interactions between halloysite nanotubes and 2, 5-bis (2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology 19(20):205709

    Article  ADS  Google Scholar 

  99. Liu M, Guo B, Du M, Lei Y, Jia D (2008) Natural inorganic nanotubes reinforced epoxy resin nanocomposites. J Polym Res 15(3):205–212

    Article  Google Scholar 

  100. Li C, Liu J, Qu X, Guo B, Yang Z (2008) Polymer-modified halloysite composite nanotubes. J Appl Polym Sci 110(6):3638–3646

    Article  Google Scholar 

  101. Haroosh HJ, Dong Y, Chaudhary DS, Ingram GD, Yusa S (2013) Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT). Appl Phys A 110(2):433–442

    Article  ADS  Google Scholar 

  102. Riza Erdogan A, Kaygusuz I, Kaynak C (2014) Influences of aminosilanization of halloysite nanotubes on the mechanical properties of polyamide-6 nanocomposites. Polym Compos 35(7):1350–1361

    Google Scholar 

  103. Liu C, Luo YF, Jia ZX, Zhong BC, Li SQ, Guo BC, Jia DM (2011) Enhancement of mechanical properties of poly (vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Exp Polym Lett 5(7):591–603

    Article  Google Scholar 

  104. Zhang J, Zhang D, Zhang A, Jia Z, Jia D (2013) Poly (methyl methacrylate) grafted halloysite nanotubes and its epoxy acrylate composites by ultraviolet curing method. J Reinf Plast Compos 32(10):713–725

    Article  Google Scholar 

  105. Yah WO, Takahara A, Lvov YM (2012) Selective modification of halloysite lumen with octadecylphosphonic acid: new inorganic tubular micelle. JACS 134(3):1853–1859

    Article  Google Scholar 

  106. Solomon D (1968) Clay minerals as electron acceptors and/or electron donors in organic reactions. Clays Clay Miner 16:31–39

    Article  ADS  Google Scholar 

  107. Liu M, Guo B, Du M, Jia D (2008) The role of interactions between halloysite nanotubes and 2, 2′-(1, 2-ethenediyldi-4, 1-phenylene) bisbenzoxazole in halloysite reinforced polypropylene composites. Polym J 40(11):1087–1093

    Article  Google Scholar 

  108. Du M, Guo B, Liu M, Jia D (2007) Formation of reinforcing inorganic network in polymer via hydrogen bonding self-assembly process. Polym J 39(3):208–212

    Article  Google Scholar 

  109. Du M, Guo B, Liu M, Cai X, Jia D (2010) Reinforcing thermoplastics with hydrogen bonding bridged inorganics. Phys B Condens Matter 405(2):655–662

    Article  ADS  Google Scholar 

  110. Zhu J, Jia J, Tjong SC (2014) Preparation, structure, and application of carbon nanotubes/bamboo charcoal composite. In: Tjong SC (ed) Nanocrystalline materials: their synthesis-structure-property relationships and applications. Elsevier: London, pp 1–25

    Google Scholar 

  111. Zuo S-L, Gao S-Y, Yuan X-G, Xu B-S (2003) Carbonization mechanism of bamboo (phyllostachys) by means of Fourier transform infrared and elemental analysis. J Forestry Res 14(1):75–79

    Article  Google Scholar 

  112. Jiang Z-H, Zhang DS, Fei BH, Yue YD, Chen XH (2004) Effects of carbonization temperature on the microstructure and electrical conductivity of bamboo charcoal. New Carbon Mater 19(4):249–253

    Google Scholar 

  113. Zhu J, Jia J, Kwong FL, Ng DH, Tjong SC (2012) Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth. Biomass Bioenerg 36:12–19

    Article  Google Scholar 

  114. Cheng H-M, Endo H, Okabe T, Saito K, Zheng GB (1999) Graphitization behavior of wood ceramics and bamboo ceramics as determined by X-ray diffraction. J Porous Mater 6(3):233–237

    Article  Google Scholar 

  115. Ye YJ, Zhang ZF (2013) Research progress of the properties and application of bamboo charcoal. Appl Mech Mater 395–396:646–649

    Google Scholar 

  116. Asada T, Ishihara S, Yamane T, Toba A, Yamada A, Oikawa K (2002) Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J Health Sci 48(6):473–479

    Article  Google Scholar 

  117. Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenerg 61:196–205

    Article  Google Scholar 

  118. Brockhoff SR, Christians NE, Killorn RJ, Horton R, Davis DD (2010) Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agronomy J 102(6):1627–1631

    Article  Google Scholar 

  119. You Z, Li D (2014) Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene. Mater Lett 122:121–124

    Article  Google Scholar 

  120. Wu KH, Ting TH, Wang GP, Yang CC, Tsai CW (2008) Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2–40 GHz. Synth Met 158(17–18):688–694

    Article  Google Scholar 

  121. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792

    Article  ADS  Google Scholar 

  122. Coleman JN, Khan U, Blau WJ, Gun′ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  Google Scholar 

  123. An KH, Kim WS, Park YS, Moon J-M, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11(5):387–392

    Article  Google Scholar 

  124. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482

    Article  ADS  Google Scholar 

  125. Zandonella C (2001) Is it all just a pipe dream? Nature 410:734–735

    Article  ADS  Google Scholar 

  126. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689

    Article  Google Scholar 

  127. Ma P-C, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41(10):1345–1367

    Article  Google Scholar 

  128. Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nanocomposite structures for aerospace applications. MRS Bull 32(4):328–334

    Article  Google Scholar 

  129. Postek MT, Vladár A, Dagata J, Farkas N, Ming B, Wagner R, Raman A, Moon RJ, Sabo R, Wegner TH, Beecher J (2011) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22(2):024005

    Article  ADS  Google Scholar 

  130. Freire CS, Silvestre AJ, Neto CP, Gandini A, Martin L, Mondragon I (2008) Composites based on acylated cellulose fibers and low-density polyethylene: effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Compos Sci Technol 68(15–16):3358–3364

    Article  Google Scholar 

  131. Hu K, Gupta MK, Kulkarni DD, Tsukruk VV (2013) Ultra-robust graphene oxide-silk fibroin nanocomposite membranes. Adv Mater 25(16):2301–2307

    Article  Google Scholar 

  132. Li C, Adamcik J, Mezzenga R (2012) Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol 7(7):421

    Article  ADS  Google Scholar 

  133. Lawrence BD, Wharram S, Kluge JA, Leisk GG, Omenetto FG, Rosenblatt MI, Kaplan DL (2010) Effect of hydration on silk film material properties. Macromol Biosci 10(4):393–403

    Article  Google Scholar 

  134. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  Google Scholar 

  135. Ghebaur A, Garea SA, Iovu H (2012) New polymer–halloysite hybrid materials—potential controlled drug release system. Int J Pharm 436(1–2):568–573

    Article  Google Scholar 

  136. Mallakpour S, Barati A (2012) Application of modified cloisite Na+ with L-phenylalanine for the preparation of new poly (vinyl alcohol)/organoclay bionanocomposite films. Polym Plast Technol Eng 51(3):321–327

    Article  Google Scholar 

  137. Mallakpour S, Shahangi V (2013) Bio-modification of cloisite Na+ with chiral L-leucine and preparation of new poly (vinyl alcohol)/organo-nanoclay bionanocomposite films. Synth React Inorg M 43(8):966–971

    Article  Google Scholar 

  138. Kaboorani A, Riedl B, Kaboorani B (2013) Ultrasonication technique: a method for dispersing nanoclay in wood adhesives. J Nanomat 2013:341897

    Article  Google Scholar 

  139. Mallakpour S, Moslemi S (2012) Dispersion of chiral amino acid organomodified Cloisite Na+ in poly (vinyl alcohol) matrix for designing of novel bionanocomposite films. Prog Org Coat 74(1):8–13

    Article  Google Scholar 

  140. Strawhecker K, Manias E (2000) Structure and properties of poly (vinyl alcohol)/Na+ montmorillonite nanocomposites. Chem Mater 12(10):2943–2949

    Article  Google Scholar 

  141. Gaaz TS, Sulong AB, Akhtar MN, Kadhum AAH, Mohamad AB, Al-Amiery AA (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20(12):22833–22847

    Article  Google Scholar 

  142. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  Google Scholar 

  143. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641

    Article  Google Scholar 

  144. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8(5):1185–1189

    Article  ADS  Google Scholar 

  145. Okamoto M, Morita S, Kotaka T (2001) Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites. Polymer 42(6):2685–2688

    Article  Google Scholar 

  146. Akelah A, Moet A (1996) Polymer-clay nanocomposites: free-radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31(13):3589–3596

    Article  ADS  Google Scholar 

  147. Hsu SL-C, Chang K-C (2002) Synthesis and properties of polybenzoxazole–clay nanocomposites. Polymer 43(15):4097–4101

    Article  Google Scholar 

  148. Tudor J, Willington L, O’Hare D, Royan B (1996) Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerisation catalysts. Chem Commun 17:2031–2032

    Article  Google Scholar 

  149. Sepehr M, Utracki LA, Zheng X, Wilkie CA (2005) Polystyrenes with macro-intercalated organoclay. Part I. Compounding and characterization. Polymer 46(25):11557–11568

    Article  Google Scholar 

  150. Lin Y, Ng KM, Chan CM, Sun G, Wu J (2011) High-impact polystyrene/halloysite nanocomposites prepared by emulsion polymerization using sodium dodecyl sulfate as surfactant. J Colloid Interface Sci 358(2):423–429

    Article  ADS  Google Scholar 

  151. Andrews R, Jacques D, Minot M, Rantell T (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol Mater Eng 287(6):395–403

    Article  Google Scholar 

  152. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645

    Article  Google Scholar 

  153. Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M, Dubois P (2003) Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer 44(8):2271–2279

    Article  Google Scholar 

  154. Pluta M (2004) Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45(24):8239–8251

    Article  Google Scholar 

  155. Garcıa-López D, Picazo O, Merino JC, Pastor JM (2003) Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur polym J 39(5):945–950

    Article  Google Scholar 

  156. Zhou WY, Guo B, Liu M, Liao R, Rabie AB, Jia D (2010) Poly (vinyl alcohol)/halloysite nanotubes bionanocomposite films: Properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res, Part A 93(4):1574–1587

    Google Scholar 

  157. Lin C-A, An T-C, Hsu Y-H (2007) Study on the far infrared ray emission property and adsorption performance of bamboo charcoal/polyvinyl alcohol fiber. Polym-Plast Technol Eng 46(11):1073–1078

    Article  Google Scholar 

  158. Li J, Zhitomirsky I (2009) Cathodic electrophoretic deposition of manganese dioxide films. Colloid Surf A: Physicochem Eng Aspect 348(1–3):248–253

    Article  Google Scholar 

  159. Deen I, Pang X, Zhitomirsky I (2012) Electrophoretic deposition of composite chitosan–halloysite nanotube–hydroxyapatite films. Colloid Surf A: Physicochem Eng Aspect 410:38–44

    Article  Google Scholar 

  160. Deen I, Zhitomirsky I (2014) Electrophoretic deposition of composite halloysite nanotube–hydroxyapatite–hyaluronic acid films. J Alloy Compound 586:S531–S534

    Article  Google Scholar 

  161. Fornes T, Yoon PJ, Hunter DL, Keskkula H, Paul DR (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43(22):5915–5933

    Article  Google Scholar 

  162. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30(14):4097–4102

    Article  ADS  Google Scholar 

  163. Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542

    Google Scholar 

  164. Vaia RA, Giannelis EP (1997) Polymer melt intercalation in organically-modified layered silicates: model predictions and experiment. Macromolecules 30(25):8000–8009

    Article  ADS  Google Scholar 

  165. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734

    Google Scholar 

  166. Wang B, Wang Q, Li L (2014) Morphology and properties of poly (vinyl alcohol)/MMT nanocomposite prepared by solid-state shear milling (S3M). J Macromol Sci Part B 53(1):78–92

    Article  ADS  Google Scholar 

  167. Mondal D, Mollick MM, Bhowmick B, Maity D, Bain MK, Rana D, Mukhopadhyay A, Dana K, Chattopadhyay D (2013) Effect of poly (vinyl pyrrolidone) on the morphology and physical properties of poly (vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog Nat Sci Mater Int 23(6):579–587

    Article  Google Scholar 

  168. Allison PG, Moser RD, Chandler MQ, Caminero-Rodriguez JA, Torres-Cancel K, Rivera OG, Goodwin JR, Gore ER, Weiss CA (2015) Mechanical, thermal, and microstructural analysis of polyvinyl alcohol/montmorillonite nanocomposites. J Nanomater 2015:291248

    Article  Google Scholar 

  169. Tian H, Wang K, Liu D, Yan J, Xiang A, Rajulu AV (2017) Enhanced mechanical and thermal properties of poly (vinyl alcohol)/corn starch blends by nanoclay intercalation. Int J Biol Macromol 101:314–320

    Article  Google Scholar 

  170. Zhang L, Wang H, Jin C, Zhang R, Li L, Li X, Jiang S (2017) Sodium lactate loaded chitosan-polyvinyl alcohol/montmorillonite composite film towards active food packaging. Innov Food Sci Emerg Technol 42:101–108

    Article  Google Scholar 

  171. Hotta S, Paul D (2004) Nanocomposites formed from linear low density polyethylene and organoclays. Polymer 45(22):7639–7654

    Article  Google Scholar 

  172. Rooj S, Das A, Heinrich G (2011) Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polym J 47(9):1746–1755

    Article  Google Scholar 

  173. Albdiry M, Yousif B (2013) Morphological structures and tribological performance of unsaturated polyester based untreated/silane-treated halloysite nanotubes. Mater Design 48:68–76

    Article  Google Scholar 

  174. Abu Taqa AG, Abu Al-Rub RK, Senouci A, Popelka A, Al-Nuaimi N, Bani-Hani KA (2017) Experimental prediction of the elastic properties of nanocomposite cementitious materials based on nanoindentation measurements. Sci Adv Mater 9(5):830–846

    Article  Google Scholar 

  175. Lewis T (2005) Interfaces: nanometric dielectrics. J Phys Part D: Appl Phys 38(2):202

    Article  ADS  Google Scholar 

  176. Virgilio N, Favis BD, Pépin MF, Desjardins P, L’Espérance G (2005) High contrast imaging of interphases in ternary polymer blends using focused ion beam preparation and atomic force microscopy. Macromolecules 38(6):2368–2375

    Article  ADS  Google Scholar 

  177. Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52(3):321–354

    Article  Google Scholar 

  178. Li Y, Huang Y, Krentz T, Natarajan B, Neely T, Schadler LS (2016) Polymer nanocomposite interfaces: the hidden lever for optimizing performance in spherical nanofilled polymers. In: Mittal KL, Netravali AN (eds) Interface/interphase in polymer nanocomposites. Scrivener Publishing LLC, Beverly, pp 1–69

    Google Scholar 

  179. Qu M, Deng F, Kalkhoran SM, Gouldstone A (2011) Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber–carbon black nanocomposites. Soft Matt 7(3):1066–1077

    Article  ADS  Google Scholar 

  180. Litvinov V, Steeman P (1999) EPDM–Carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules 32(25):8476–8490

    Article  ADS  Google Scholar 

  181. Pompe G, Mäder E (2000) Experimental detection of a transcrystalline interphase in glass-fibre/polypropylene composites. Compos Sci Technol 60(11):m2159–m2167

    Article  Google Scholar 

  182. Brown D, Marcadon V, Mele P, Alberola ND (2008) Effect of filler particle size on the properties of model nanocomposites. Macromolecules 41(4):1499–1511

    Article  ADS  Google Scholar 

  183. Li Y, Waas AM, Arruda EM (2011) A closed-form, hierarchical, multi-interphase model for composites—derivation, verification and application to nanocomposites. J Mech Phys Solid 59(1):43–63

    Article  ADS  MathSciNet  MATH  Google Scholar 

  184. Gu Y, Li M, Wang J, Zhang Z (2010) Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon 48(11):3229–3235

    Article  Google Scholar 

  185. Appiah K, Wang Z, Lackey W (2000) Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites. Carbon 38(6):831–838

    Article  Google Scholar 

  186. Dwivedi H, Mathur RB, Dhami TL, Bahl OP, Monthioux M, Sharma SP (2006) Evidence for the benefit of adding a carbon interphase in an all-carbon composite. Carbon 44(4):699–709

    Article  Google Scholar 

  187. Van Landingham M, Dagastine RR, Eduljee RF, McCullough RL, Gillespie JW Jr (1999) Characterization of nanoscale property variations in polymer composite systems: 1. Experimental results. Compos Part A Appl Sci Manuf 30(1):75–83

    Google Scholar 

  188. Hodzic A, Kim JK, Lowe AE, Stachurski ZH (2004) The effects of water aging on the interphase region and interlaminar fracture toughness in polymer–glass composites. Compos Sci Technol 64(13–14):2185–2195

    Article  Google Scholar 

  189. Wright-Charlesworth DD, Peers WJ, Miskioglu I, Loo LL (2005) Nanomechanical properties of self-reinforced composite poly (methyl methacrylate) as a function of processing temperature. J Biomed Mater Res, Part A 74(3):306–314

    Article  Google Scholar 

  190. Gao S-L, Mäder E (2002) Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Compos Part A Appl Sci Manuf 33(4):559–576

    Article  Google Scholar 

  191. Gao S-L, Mäder E, Zhandarov SF (2004) Carbon fibers and composites with epoxy resins: topography, fractography and interphases. Carbon 42(3):515–529

    Article  Google Scholar 

  192. Yedla S, Kalukanimuttam M, Winter RM, Khanna SK (2008) Effect of shape of the tip in determining interphase properties in fiber reinforced plastic composites using nanoindentation. J Eng Mater Technol 130(4):041010

    Article  Google Scholar 

  193. Jafarzadeh S, Claesson PM, Sundell PE, Pan J, Thormann E (2014) Nanoscale electrical and mechanical characteristics of conductive polyaniline network in polymer composite films. ACS Appl Mater Interfaces 6(21):19168–19175

    Article  Google Scholar 

  194. Sababi M, Kettle J, Rautkoski H, Claesson PM, Thormann E (2012) Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy. ACS Appl Mater Interfaces 4(10):5534–5541

    Article  Google Scholar 

  195. Pakzad A, Simonsen J, Yassar RS (2012) Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites. Compos Sci Technol 72(2):314–319

    Article  Google Scholar 

  196. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Kenny JM (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128(5):3220–3230

    Article  Google Scholar 

  197. Widjojo N, Chung TS, Weber M, Maletzko C, Warzelhan V (2011) The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. J Membr Sci 383(1–2):214–223

    Article  Google Scholar 

  198. Knauer KM, Jennings AR, Bristol AN, Iacono ST, Morgan SE (2016) Enhanced surface properties of branched poly (ether sulfone) from semifluorinated polyhedral oligomeric silsequioxanes. ACS Appl Mater Interfaces 8(19):12434–12444

    Article  Google Scholar 

  199. Yu Y-H, Lin CY, Yeh JM, Lin WH (2003) Preparation and properties of poly (vinyl alcohol)–clay nanocomposite materials. Polymer 44(12):3553–3560

    Article  Google Scholar 

  200. Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3(3):034122

    Article  ADS  Google Scholar 

  201. Swapna V, Suresh KI, Saranya V, Rahana MP, Stephen R (2015) Thermal properties of poly (vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites. Int J Plast Technol 19(1):124–136

    Article  Google Scholar 

  202. Cavallaro G, De Lisi R, Lazzara G, Milioto S (2013) Polyethylene glycol/clay nanotubes composites. J Therm Anal Calorim 112(1):383–389

    Article  Google Scholar 

  203. Schmitt H, Prashantha K, Soulestin J, Lacrampe MF, Krawczak P (2012) Preparation and properties of novel melt-blended halloysite nanotubes/wheat starch nanocomposites. Carbohyd Polym 89(3):920–927

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanad Mousa .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mousa, M., Dong, Y. (2021). Introduction to PVA-Based Bionanocomposite Films. In: Multiscaled PVA Bionanocomposite Films. Springer, Singapore. https://doi.org/10.1007/978-981-15-8771-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8771-9_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8770-2

  • Online ISBN: 978-981-15-8771-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics