Skip to main content
Log in

Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly(ε-caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Heydarkhan-Hagvall, K. Schenke-Layland, A. Dhanasopon, F. Rofail, H. Smith, B. Wu, R. Shemin, R. Beygui, W. MacLellan, Biomaterials 29, 2907 (2008)

    Article  Google Scholar 

  2. Q. Pham, U. Sharma, A. Mikos, Tissue Eng. 12, 1197 (2006)

    Article  Google Scholar 

  3. D. Liang, B. Hsiao, B. Chu, Adv. Drug Deliv. Rev. 59, 1392 (2007)

    Article  Google Scholar 

  4. H. Jiang, Y. Hu, P. Zhao, Y. Li, K. Zhu, J. Biomed. Mater. Res., Part B, Appl. Biomater. 79, 50 (2006)

    Article  Google Scholar 

  5. D. Yang, Y. Li, J. Nie, Carbohydr. Polym. 69, 538 (2007)

    Article  Google Scholar 

  6. Y. Ji, K. Ghosh, X. Shu, B. Li, J. Sokolov, G. Prestwich, R. Clark, M. Rafailovich, Biomaterials 27, 3782 (2006)

    Article  Google Scholar 

  7. J. Han, C. Branford-White, L. Zhu, Carbohydr. Polym. 79, 214 (2010)

    Article  Google Scholar 

  8. G. Kim, H. Yoon, Y. Park, Appl. Phys. A, Mater, Sci. Process. 100, 1197 (2010)

    Article  ADS  Google Scholar 

  9. K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. Seo, B. Hsiao, B. Chu, M. Hadjiargyrou, Biomaterials 24, 4977 (2003)

    Article  Google Scholar 

  10. W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, J. Weng, Biomacromolecules 7, 1623 (2006)

    Article  Google Scholar 

  11. M. Liu, B. Guo, M. Du, F. Chen, D. Jia, Polymer 50, 3022 (2009)

    Article  Google Scholar 

  12. A. Touny, J. Lawrence, A. Jones, S. Bhaduri, J. Mater. Res. 25, 857 (2010)

    Article  ADS  Google Scholar 

  13. E. Kenawy, G. Bowlin, K. Mansfield, J. Layman, D. Simpson, E. Sanders, G. Wnek, J. Control. Release 81, 57 (2002)

    Article  Google Scholar 

  14. P. Haque, I. Barker, A. Parsons, K. Thurecht, I. Ahmed, G. Walker, C. Rudd, D. Irvine, J. Polym. Sci., Part A, Polym. Chem. 48, 3082 (2010)

    Article  Google Scholar 

  15. L.E. Alexander, X-Ray Diffraction Methods in Polymer Science (Wiley-Interscience, New York, 1969)

    Google Scholar 

  16. M. Zamani, M. Morshed, J. Varshosaz, M. Jannesari, Eur. J. Pharm. Biopharm. 75, 179 (2010)

    Article  Google Scholar 

  17. K. Arayanarakul, N. Choktaweesap, D. Aht ong, C. Meechaisue, P. Supaphol, Macromol. Mater. Eng. 291, 581 (2006)

    Article  Google Scholar 

  18. M. Spasova, O. Stoilova, N. Manolova, I. Rashkov, G. Altankov, J. Bioact. Compat. Polym. 22, 62 (2007)

    Article  Google Scholar 

  19. M. Liu, B. Guo, M. Du, D. Jia, Appl. Phys. A, Mater. Sci. Process. 88, 391 (2007)

    Article  ADS  Google Scholar 

  20. A. Boultif, D. Louer, J. Appl. Crystallogr. 37, 724 (2004)

    Article  Google Scholar 

  21. N. Ning, Q. Yin, F. Luo, Q. Zhang, R. Du, Q. Fu, Polymer 48, 7374 (2007)

    Article  Google Scholar 

  22. Y. Dong, D. Chaudhary, H. Haroosh, T. Bickford, J. Mater. Sci. 46, 6148 (2011)

    Article  ADS  Google Scholar 

  23. M. Shibata, Y. Inoue, M. Miyoshi, Polymer 47, 3557 (2006)

    Article  Google Scholar 

  24. P. Picciani, E. Medeiros, Z. Pan, D. Wood, W. Orts, L. Mattoso, B. Soares, Macromol. Mater. Eng. 295, 618 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The Ph.D. scholarship awarded by the Iraqi government to Mr. Hazim J. Haroosh and the financial support of Curtin Internal Research Grants (IRG) 2010 (Project No. 47604) to Dr. Yu Dong are gratefully acknowledged. The authors also wish to thank the Curtin Electron Microscopy lab and Applied Physics lab for technical assistance with SEM and XRD analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haroosh, H.J., Dong, Y., Chaudhary, D.S. et al. Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT). Appl. Phys. A 110, 433–442 (2013). https://doi.org/10.1007/s00339-012-7233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7233-7

Keywords

Navigation