Skip to main content
Log in

Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Halloysite nanotubes (HNTs), a kind of naturally occurring silicates possessing typical fibular structure, were introduced to fabricate polypropylene (PP)/HNTs nanocomposites. The non-isothermal crystallization behaviors were investigated by differential scanning calorimetry (DSC) method according to different treatments. The results suggest, with the inclusion of HNTs in PP matrix, the nanocomposites crystallize at higher temperature regime, which are correlated with the heterogeneous nucleating effects of HNTs during the crystallization process of PP. The kinetics studies of crystallization show that PP nanocomposites possess faster crystallization process and higher activation energy due to the nucleating effect and hindrance effect of HNTs to the motion of PP chains. The polarized light microscopy (PLM) observations further show that HNTs serve as nucleation sites and accelerate the crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ray SS, Okamoto M (2003) Prog Polym Sci 28(11):1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  2. Gilman JW (1999) Appl Clay Sci 15(1-2):31–49. doi:10.1016/S0169-1317(99)00019-8

    Article  CAS  Google Scholar 

  3. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Macromolules 30(20):6333–6338. doi:10.1021/ma961786h

    Article  CAS  Google Scholar 

  4. Chan CM, Wu JS, Li JX, Cheung YK (2002) Polymer (Guildf) 43(10):2981–2992. doi:10.1016/S0032-3861(02)00120-9

    Article  CAS  Google Scholar 

  5. Moniruzzaman M, Winey KI (2006) Macromolecules 39(16):5194–5205. doi:10.1021/ma060733p

    Article  CAS  Google Scholar 

  6. Ji XL, Hampsey JE, Hu QY, He JB, Yang ZZ, Lu YF (2003) Chem Mater 15(19):3656–3662. doi:10.1021/cm0300866

    Article  CAS  Google Scholar 

  7. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Clay Miner 40(4):383–426. doi:10.1180/0009855054040180

    Article  CAS  Google Scholar 

  8. Brindley GW, Brown G (1980) Crystal Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London, pp 1–123

    Google Scholar 

  9. Bailey SW (1988) Reviews in Mineralogy, Bailey SW. Mineralogical Society of America, Chelsea, MI, pp 675–725

    Google Scholar 

  10. Liu MX, Guo BC, Zou QL, Du ML, Jia DM (2008) Nanotechnology 19(20):205709. doi:10.1088/0957-4484/19/20/205709

    Article  Google Scholar 

  11. Liu MX, Guo BC, Du ML, Cai XJ, Jia DM (2007) Nanotechnology 18(45):455703. doi:10.1088/0957-4484/18/45/455703

    Article  Google Scholar 

  12. Du ML, Guo BC, Liu MX, Jia DM (2007) Polym Polym Compos 15(4):321–328

    CAS  Google Scholar 

  13. Du ML, Guo BC, Liu MX, Jia DM (2006) Polym J 38(11):1198–1204. doi:10.1295/polymj.PJ2006038

    Article  CAS  Google Scholar 

  14. Du ML, Guo BC, Jia DM (2006) Eur Polym J 42(6):1362–1369. doi:10.1016/j.eurpolymj.2005.12.006

    Article  CAS  Google Scholar 

  15. Du ML, Guo BC, Cai XJ, Jia ZX, Liu MX, Jia DM (2008) E-polym 18:1–14

    Google Scholar 

  16. Bureau MN, Denault J, Cole KC, Bureau MN, Denault J, Cole KC, Enright GD (2002) Polym. Eng Sci 42(9):1897–1906

    Article  CAS  Google Scholar 

  17. Rao YQ, Greener J, Avila-Orta CA, Hsiao BS, Blanton TN (2008) Polymer (Guildf) 49(10):2507–2514. doi:10.1016/j.polymer.2008.03.046

    Article  CAS  Google Scholar 

  18. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Polymer (Guildf) 44(8):2373–2377. doi:10.1016/S0032-3861(03)00073-9

    Article  CAS  Google Scholar 

  19. Maiti P, Nam PH, Okamoto M, Hasegawa N, Usuki A (2002) Macromoluecules 35(6):2042–2049. doi:10.1021/ma010852z

    Article  CAS  Google Scholar 

  20. Zhang QX, Yu ZZ, Xie XL, Mai YW (2004) Polymer (Guildf) 45(17):5985–5994. doi:10.1016/j.polymer.2004.06.044

    Article  CAS  Google Scholar 

  21. Papageorgiou GZ, Achilias DS, Bikiaris DN, Bikiaris DN, Karayannidis GP (2005) Thermochim Acta 42(1-2):117–128. doi:10.1016/j.tca.2004.09.001

    Article  Google Scholar 

  22. Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q (2007) Polymer (Guildf) 48(25):7374–7384. doi:10.1016/j.polymer.2007.10.005

    Article  CAS  Google Scholar 

  23. Brandrup J, Immergut EH (1989) Polymer Handbook, 3rd edn. Chapter V. Wiley, New York

    Google Scholar 

  24. Jeziorny A (1978) Polymer (Guildf) 19:1142–1148. doi:10.1016/0032-3861(78)90060-5

    Article  CAS  Google Scholar 

  25. Ozawa T (1971) Polymer (Guildf) 12(3):150–158. doi:10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  26. Yin JH, Mo ZX (2001) Modern Polymer Physics. Science Press, Beijing

    Google Scholar 

  27. Kissinger HE (1956) J Res Natl Stan 57:17–21

    Google Scholar 

  28. Vyazovkin S, Sbirrazzuoli N (2004) Macromol Rapid Commun 25(6):733–738. doi:10.1002/marc.200300295

    Article  CAS  Google Scholar 

  29. Hoffman JD, Davis GT, Lauritzen JI in: Treatise on Solid State Chemistry, NB Hannay Ed, Plenum, New York 1976, Vol. 3, p. 497

  30. Xiao WC, Wu PY, Feng JC (2008) J Appl Polym Sci 108:3370–3379. doi:10.1002/app.27997

    Article  CAS  Google Scholar 

  31. Marand H, Xu JN, Srinivas S (2008) Macromolecules 31(23):8219–8229. doi:10.1021/ma980747y

    Article  Google Scholar 

  32. Vyazovkin S, Dollimore D (1996) J Chem Inf Comput Sci 36:42–45. doi:10.1021/ci950062m

    CAS  Google Scholar 

  33. Vyazovkin S (1997) J Comput Chem 18:393–402. doi:10.1002/(SICI)1096-987X(199702)18:3<393::AID-JCC9>3.0.CO;2-P

    Article  CAS  Google Scholar 

  34. Vyazovkin S (2001) J Comput Chem 22:178–183. doi:10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#

    Article  CAS  Google Scholar 

  35. Doyle CD (1962) J Appl Polym Sci 6:639–642. doi:10.1002/app.1962.070062406

    Article  CAS  Google Scholar 

  36. Li J, Zhou CX, Gang W (2003) Polym Test 22(2):217–223. doi:10.1016/S0142-9418(02)00085-5

    Article  Google Scholar 

  37. Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Macromolecules 34(6):1864–1872. doi:10.1021/ma001122e

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support by the project of National Natural Science Foundation of China (NSFC) (Grant numbers: 50603005, 50873035), Postdoctoral Science Foundation of China (Grant number: 20080430111), and Postdoctoral Foundation of South China University of Technology (Grant number: 20080207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, M., Guo, B., Wan, J. et al. Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res 17, 109–118 (2010). https://doi.org/10.1007/s10965-009-9296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9296-5

Keywords

Navigation