Skip to main content

Rhizosphere Plant–Microbe Interactions Under Abiotic Stress

  • Chapter
  • First Online:
Rhizosphere Biology: Interactions Between Microbes and Plants

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Rhizosphere microbiomes and plant-microbiome interactions govern many key biogeochemical processes important for plant nutrition and their ability to tolerate biotic and abiotic stresses. Several studies suggest interactions of microbes with crop plants play a prominent role in adaptation, maintenance, and survival of both the partners as well as for soil health in a number of abiotic stresses such as drought, salinity, heavy metal contamination, etc., by regulating changes in terms of biochemical, physiological, and molecular processes of plants. The strain specificity plays crucial role in exploiting characteristic potential of candidate microbe to provide tolerance and alleviate negative impact of abiotic stresses in plants. During stress management, plant growth promoting bacteria (PGPB) have been shown to activate plant antioxidant defense machinery by regulating the activity of scavenging key enzymes to level over produced reactive oxygen species (ROS) and by regulating the amounts of proteins, polysaccharides, and important phytohormones. Many Rhizobacteria have also been shown to produce ACC deaminase enzyme initiating a cascade of physiological and biochemical changes in the plant thereby helping them withstand effects of abiotic stresses. Some of the examples for such PGPB include Azospirillum, Azotobacter, Bacillus, Bradyrhizobium, Burkholderia, Enterobacter, Pseudomonas, Rhizobium, Methylobacterium, and Variovorax. In view of the projections from climate-smart agriculture research, predictions for reduced rainfall and increased effects of other abiotic stresses such as salinity across many agricultural regions worldwide are being calculated, exploitation of the beneficial plant–microbe interactions to alleviate abiotic stress effects in crops should be one of the key approaches to improving global food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV (2016) Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293

    Article  PubMed  CAS  Google Scholar 

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    Article  PubMed  CAS  Google Scholar 

  • Armada E, Azcón R, López-Castillo OM, Calvo-Polanco M, Ruiz-Lozano JM (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74

    Article  PubMed  CAS  Google Scholar 

  • Asmar F, Eiland F, Nielsen NE (1994) Effect of extracellular-enzyme activities on solubilization rate of soil organic nitrogen. Biol Fertil Soils 17:32–38

    Article  CAS  Google Scholar 

  • Aulakh M, Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148

    Article  CAS  Google Scholar 

  • Awad N, Turky A, Abdelhamid M, Attia M (2012) Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. J Appl Sci Res 8:2033–2044

    CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Balsanelli E, Baura VA, Pedrosa FO, Souza EM, Monteiro RA (2014) Exopolysaccharide biosynthesis enables mature biofilm formation on abiotic surfaces by Herbaspirillum seropedicae. PLoS One 9:e110392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

    CAS  Google Scholar 

  • Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  PubMed  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signaling. J Exp Bot 65:1229–1240

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronovn VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  PubMed  CAS  Google Scholar 

  • Belimov AA, Zinovkina NY, Safronova VI, Litvinsky VA, Nosikov VV, Zavalin AA, Tikhonovich IA (2019) Rhizobial ACC deaminase contributes to efficient symbiosis with pea (Pisum sativum L.) under single and combined cadmium and water deficit stress. Environ Exp Bot 167:103859

    Article  CAS  Google Scholar 

  • Bharti N, Barnawal D (2019) Amelioration of salinity stress by PGPR: ACC deaminase and ROS scavenging enzymes activity. In: PGPR amelioration in sustainable agriculture. Elsevier, Cambridge, pp 85–106

    Chapter  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzianatrono limnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharyya D, Lee YH (2017) A cocktail of volatile compounds emitted from Alcaligenes faecalis JBCS1294 induces salt tolerance in Arabidopsis thaliana by modulating hormonal pathways and ion transporters. J Plant Physiol 214:64–73

    Article  PubMed  CAS  Google Scholar 

  • Biswal B, Joshi P, Raval M, Biswal U (2011) Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. Curr Sci 101:47–56

    CAS  Google Scholar 

  • Boutheina ZE, Aya HD, Naima BO, Ahmed NA (2019) Responses of date palm seedling to co-inoculation with phosphate solubilizing bacteria and mycorrhizal arbuscular fungi. Int J Environ Agric Biotechnol 4(2):581

    Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  PubMed  CAS  Google Scholar 

  • Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  CAS  Google Scholar 

  • Çakmakçı R, Turan M, Kıtır N, Güneş A, Nikerel E, Özdemir BS, Yıldırım E, Olgun M, Topçuoğlu B, Tüfenkçi Ş, Karaman MR, Tarhan L, Mokhtari NEP (2017) The role of soil beneficial bacteria in wheat production: a review. In: Wanyera R, Owuoche J (eds) Wheat improvement, management and utilization. Intech, Rijeka, pp 115–149

    Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Plant Growth Regul 33(2):440–459

    Article  CAS  Google Scholar 

  • Chandra D, Srivastava R, Glick BR, Sharma AK (2018a) Drought-tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (L.) Gaertn.) under non-stressed and drought-stressed conditions. Pedosphere 28:227–240

    Article  CAS  Google Scholar 

  • Chandra D, Srivastava R, Sharma A (2018b) Influence of IAA and ACC deaminase producing fluorescent pseudomonads in alleviating drought stress in wheat (Triticum aestivum). Agric Res 7:290–299

    Article  CAS  Google Scholar 

  • Chandra D, Srivastava R, Gupta VVSR, Franco CM, Sharma AK (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65(999):1–17

    Google Scholar 

  • Chandra D, Srivastava R, Glick BR, Sharma AK (2020) Rhizobacteria producing ACC deaminase mitigate water-stress response in finger millet (Eleusine coracana (L.) Gaertn.). 3 Biotech 10:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee P, Samaddar S, Anandham R, Kang Y, Kim K, Selvakumar G, Sa T (2017) Beneficial soil bacterium Pseudomonas frederiksbergensis OS261 augments salt tolerance and promotes red pepper plant growth. Front Plant Sci 8:705

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha-um S, Rai V, Takabe T (2019) Proline, glycinebetaine, and trehalose uptake and inter-organ transport in plants under stress. In: Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Cham, pp 201–223

    Chapter  Google Scholar 

  • Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, Zhang R (2016) Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol Plant 158:34–44

    Article  PubMed  CAS  Google Scholar 

  • Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288

    Article  CAS  Google Scholar 

  • Cho SM, Kang BR, Kim YC (2013) Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol J 29:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65:1627–1637

    Article  PubMed  CAS  Google Scholar 

  • Choudhary DK, Kasotia A, Jain S, Vaishnav A, Kumari S, Sharma KP, Varma A (2016) Bacterial-mediated tolerance and resistance to plants under abiotic and biotic stresses. Plant Growth Regul 35:276–300

    Article  CAS  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867

    Article  PubMed  CAS  Google Scholar 

  • Chu TN, Tran BTH, Van Bui L, Hoang MTT (2019) Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC Res Notes 12:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462

    Article  CAS  Google Scholar 

  • Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Damodaran T, Rai R, Jha S, Kannan R, Pandey B, Sah V, Mishra V, Sharma D (2014) Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact 9:577–584

    Article  CAS  Google Scholar 

  • Dazzo FB, Yanni YG, Jones A, Elsadany AY (2015) CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces. AIMS Bioeng 2:469–486

    Article  CAS  Google Scholar 

  • Dodd IC (2005) Root-to-shoot signaling: assessing the roles of ‘up’ in the up and down world of long-distance signaling in planta. Plant Soil 274:251–270

    Article  CAS  Google Scholar 

  • El-Esawi MA, Alaraidh IA, Alsahli AA, Alamri SA, Ali HM, Alayafi AA (2018) Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol Biochem 132:375–384

    Article  PubMed  CAS  Google Scholar 

  • El-Esawi MA, Al-Ghamdi AA, Ali HM, Alayafi AA (2019) Azospirillum lipoferum FK1 confers improved salt tolerance in chickpea (Cicer arietinum L.) by modulating osmolytes, antioxidant machinery and stress-related genes expression. Environ Exp Bot 159:55–65

    Article  CAS  Google Scholar 

  • El-Kader A, Dina IM, Salem SH, El-Zamik FI, El-Basit A, Howaida ML, Rizk MA, El-Aziz A (2017) Effect of inoculation with arbuscular mycorrhizal fungi and labeled nitrogen fertilizer on root colonization and spore density of some medicinal plants. Zagazig J Agric Res 44:1715–1730

    Article  Google Scholar 

  • El-Meihy RM, Abou-Aly HE, Youssef AM, Tewfike TA, El-Alkshar EA (2019) Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environ Exp Bot 162:295–301

    Article  CAS  Google Scholar 

  • Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, Singapore, pp 163–200

    Chapter  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 8:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, Dordrecht, pp 329–339

    Chapter  Google Scholar 

  • Govindasamy V, George P, Raina SK, Kumar M, Rane J, Annapurna K (2018) Plant-associated microbial interactions in the soil environment: role of endophytes in imparting abiotic stress tolerance to crops. In: Advances in crop environment interaction. Springer, Singapore, pp 245–284

    Chapter  Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501(7468):S1–S1

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Pandey S (2019) Unravelling the biochemistry and genetics of ACC deaminase-An enzyme alleviating the biotic and abiotic stress in plants. Plant Gene 18:100175

    Article  CAS  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Int 2016:6284547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M, Oku H, Islam MT (2019) Plant tolerance to environmental stress: role of phyto-protectants, 1st edn. CRC Press, Boca Raton, p 448

    Book  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P, Plassard C, Jaillard B (2006) Rhizosphere: a new frontier for soil biogeochemistry. J Geochem Explor 88:210–213

    Article  CAS  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hmaeid N, Wali M, Mahmoud OM-B, Pueyo JJ, Ghnaya T, Abdelly C (2019) Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl Soil Ecol 133:104–113

    Article  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, Rizvi H (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  PubMed  CAS  Google Scholar 

  • Islam F, Yasmeen T, Arif MS, Ali S, Ali B, Hameed S, Zhou W (2016) Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Regul 80:23–36

    Article  CAS  Google Scholar 

  • Jatan R, Tiwari S, Asif MH, Lata C (2019) Genome-wide profiling reveals extensive alterations in Pseudomonas putida-mediated miRNAs expression during drought stress in chickpea (Cicer arietinum L.). Environ Exp Bot 157:217–227

    Article  CAS  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Transgenic crop plants. Springer, Berlin, pp 67–132

    Chapter  Google Scholar 

  • Jia P, Zhao Z (2014) VarWalker: personalized mutation network analysis of putative cancer genes from next-generation sequencing data. PLoS Comput Biol 10:e1003460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jogawat A (2019) Osmolytes and their role in abiotic stress tolerance in plants. In: Molecular plant abiotic stress: biology and biotechnology, vol 12. Wiley Blackwell, Chichester, pp 91–104

    Chapter  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Joshi R, Singla-Pareek SL, Pareek A (2018) Engineering abiotic stress response in plants for biomass production. J Biol Chem 293:5035–5043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang SM, Khan AL, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee IJ (2014a) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682

    Article  CAS  Google Scholar 

  • Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park J-M, Kim BR, Shin DH, Lee IJ (2014b) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of Soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124

    Article  PubMed  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, El-Daim IAA, Bejai S, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kasim WA, Gaafar RM, Abou-Ali RM, Omar MN, Hewait HM (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61:217–227

    Article  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Khan N, Bano A (2019) Rhizobacteria and abiotic stress management. In: Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 65–80

    Chapter  Google Scholar 

  • Khan AL, Waqas M, Asaf S, Kamran M, Shahzad R, Bilal S, Khan MA, Kang S-M, Kim Y-H, Yun B-W (2017) Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ Exp Bot 133:58–69

    Article  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Anal AK, Nath V (2018) Growth response of litchi to arbuscular mycorrhizal co-inoculation with Trichoderma viride, Azotobacter chroococcum and Bacillus megaterium. Indian Phytopathol 71:65–74

    Article  Google Scholar 

  • Kuzyakov Y, Leinweber P, Sapronov D, Eckhardt KU (2003) Qualitative assessment of rhizodeposits in non-sterile soil by analytical pyrolysis. J Plant Nutr Soil Sci 166(6):719–723

    Article  CAS  Google Scholar 

  • Lastochkina O, Aliniaeifard S, Seifikalhor M, Yuldashev R, Pusenkova L, Garipova S (2019) Plant growth-promoting bacteria: biotic strategy to Cope with abiotic stresses in wheat. In: Wheat production in changing environments. Springer, Singapore, pp 579–614

    Chapter  Google Scholar 

  • Li H, Lei P, Pang X, Li S, Xu H, Xu Z, Feng X (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34

    Article  CAS  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipiec J, Siczek A, Sochan A, Bieganowski A (2016) Effect of sand grain shape on root and shoot growth of wheat seedlings. Geoderma 265:1–5

    Article  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Moreno A, Zhang C, Freitas H (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85

    Article  PubMed  CAS  Google Scholar 

  • Marinković J, Bjelić D, Đorđević V, Balešević-Tubić S, Jošić D, Vucelić-Radović B (2019) Performance of different Bradyrhizobium strains in root nodule symbiosis under drought stress. Acta Physiol Plant 41:37

    Article  CAS  Google Scholar 

  • Masciarelli O, Llanes A, Luna V (2014) A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol Res 169:609–615

    Article  PubMed  CAS  Google Scholar 

  • Mathew DC, Ho YN, Gicana RG, Mathew GM, Chien MC, Huang CC (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phyto protection against mercury. PLoS One 10:e0121178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19

    Article  PubMed  CAS  Google Scholar 

  • Moreira H, Pereira SI, Vega A, Castro PM, Marques AP (2020) Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manag 257:109982

    Article  CAS  Google Scholar 

  • Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey RR (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 43–71

    Chapter  Google Scholar 

  • Nanjundappa A, Bagyaraj DJ, Saxena AK, Kumar M, Chakdar H (2019) Interaction between arbuscular mycorrhizal fungi and Bacillus spp. in soil enhancing growth of crop plants. Fungal Biol Biotechnol 6(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9

    Article  PubMed  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Nguyen D, Rieu I, Mariani C, van Dam NM (2016) How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol Biol 91:727–740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliveira AL, Santos OJ, Marcelino PR, Milani KM, Zuluaga MY, Zucareli C, Gonçalves LS (2017) Maize inoculation with Azospirillum brasilense Ab-V5 cells enriched with exopolysaccharides and polyhydroxybutyrate results in high productivity under low N fertilizer input. Front Microbiol 8:1873

    Article  PubMed  PubMed Central  Google Scholar 

  • Oosten Van MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of bio- stimulants and bio effectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Dukare AS, Manjunatha B, Annapurna K (2017) Plant growth-promoting rhizobacteria for abiotic stress alleviation in crops. In: Advances in soil microbiology: recent trends and future prospects. Springer, Singapore, pp 57–79

    Chapter  Google Scholar 

  • Płociniczak T, Sinkkonen A, Romantschuk M, Piotrowska-Seget Z (2013) Characterization of Enterobacter intermedius MH8b and its use for the enhancement of heavy metals uptake by Sinapis alba L. Appl Soil Ecol 63:1–7

    Article  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 247–260

    Chapter  Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam K, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Mycorrhiza-function, diversity, state of the art. Springer, Cham, pp 1–7

    Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203–207

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan R, Baek KH (2017) Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity. Plant Physiol Biochem 116:116–126

    Article  PubMed  CAS  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  PubMed  CAS  Google Scholar 

  • Rincón A, Valladares F, Gimeno TE, Pueyo JJ (2008) Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol 28:1693–1701

    Article  PubMed  Google Scholar 

  • Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20

    Article  PubMed  CAS  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168:1031–1037

    Article  PubMed  CAS  Google Scholar 

  • Saia S, Aissa E, Luziatelli F, Ruzzi M, Colla G, Ficca AG, Cardarelli M, Rouphael Y (2019) Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza 30:133–147

    Article  PubMed  CAS  Google Scholar 

  • Saiki ST, Ishida A, Yoshimura K, Yazaki K (2017) Physiological mechanisms of drought-induced tree die-off in relation to carbon, hydraulic and respiratory stress in a drought-tolerant woody plant. Sci Rep 7:2995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Samaddar S, Chatterjee P, Choudhury AR, Ahmed S, Sa T (2019) Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiol Res 219:66–73

    Article  PubMed  CAS  Google Scholar 

  • Sandhya V, Ali SZ (2015) The production of exopolysaccharide by Pseudomonas putida gap_p45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84:512–519

    Article  CAS  Google Scholar 

  • Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32

    Article  PubMed  CAS  Google Scholar 

  • Sarkar A, Pramanik K, Mitra S, Soren T, Maiti TK (2018) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol 231:434–442

    Article  PubMed  CAS  Google Scholar 

  • Schüßler A, Walker C (2010) The glomeromycota: a species list with new families and new genera 1–58. Libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. www.amf-phylogeny.com

  • Seki M, Narusaka MF, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Ghosh D, Mohapatra S (2018) Modulation of polyamine biosynthesis in Arabidopsis thaliana by a drought mitigating Pseudomonas putida strain. Plant Physiol Biochem 129:180–188

    Article  PubMed  CAS  Google Scholar 

  • Seyahjani EA, Yarnia M, Farahvash F, Benam MB, Rahmani HA (2020) Influence of Rhizobium, Pseudomonas and Mycorrhiza on some physiological traits of red beans (Phaseolus vulgaris L.) under different irrigation conditions. Legum Res 43:81–86

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shirinbayan S, Khosravi H, Malakouti MJ (2019) Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Appl Soil Ecol 133:138–145

    Article  Google Scholar 

  • Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Singh S, Parihar P, Mishra RK, Tripathi DK, Singh VP, Chauhan DK, Prasad SM (2016) Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes. Front Plant Sci 7:1299

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Elsevier, London

    Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash P, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  PubMed  CAS  Google Scholar 

  • Strickler SR, Bombarely A, Mueller LA (2012) Designing a transcriptome next-generation sequencing project for a non-model plant species. Am J Bot 99:257–266

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Ricci E, Souleimanov A, Smith DL (2016) A proteomic approach to lipo-chitooligosaccharide and thuricin 17 effects on soybean germination unstressed and salt stress. PLoS One 11:e0160660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tahir M, Ahmad I, Shahid M, Shah GM, Farooq ABU, Akram M, Tabassum SA, Naeem MA, Khalid U, Ahmad S (2019) Regulation of antioxidant production, ion uptake and productivity in potato (Solanum tuberosum L.) plant inoculated with growth promoting salt tolerant Bacillus strains. Ecotoxicol Environ Saf 178:33–42

    Article  PubMed  CAS  Google Scholar 

  • Tallapragada P, Dikshit R, Seshagiri S (2016) Influence of Rhizophagus spp. and Burkholderia seminalis on the growth of tomato (Lycopersicon esculatum) and bell pepper (Capsicum annuum) under drought stress. Commun Soil Sci Plant Anal 47:1975–1984

    Article  CAS  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Varma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  PubMed  CAS  Google Scholar 

  • Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, Van Bel M, Farrinelli L, Ferreira PC, Vandepoele K (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9:e114744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verbon EH, Liberman LM (2016) Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci 21:218–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vetoshkina DV, Ivanov BN, Khorobrykh SA, Proskuryakov II, Borisova-Mubarakshina MM (2017) Involvement of the chloroplast plastoquinone pool in the Mehler reaction. Physiol Plant 161:45–55

    Article  PubMed  CAS  Google Scholar 

  • Vimal SR, Patel VK, Singh JS (2018) Plant growth promoting Curtobacterium albidum strain SRV4: an agriculturally important microbe to alleviate salinity stress in paddy plants. Ecol Indic 105:553–562

    Article  CAS  Google Scholar 

  • Viscardi S, Ventorino V, Duran P, Maggio A, De Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16:848–863

    CAS  Google Scholar 

  • Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C (2012a) The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44:1098–1103

    Article  PubMed  CAS  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu H-X, Wang YP, Guo JH (2012b) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7:e52565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Z, Chu Y, Zhang W, Lang D, Zhang X (2019) Bacillus pumilus alleviates drought stress and increases metabolite accumulation in Glycyrrhiza uralensis Fisch. Environ Exp Bot 158:99–106

    Article  CAS  Google Scholar 

  • Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92(11):775–781

    Article  CAS  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahir Z, Munir A, Asghar H, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963

    PubMed  CAS  Google Scholar 

  • Zhang H, Li G, Song X, Yang D, Li Y, Qiao J, Zhang J, Zhao S (2013) Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land. Acta Ecol Sin 33:38–44

    Article  Google Scholar 

  • Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X (2016) Genetic mapping and molecular marker development for Pi65 (t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet 129:1035–1044

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Chandra, D., Sharma, A.K. (2021). Rhizosphere Plant–Microbe Interactions Under Abiotic Stress. In: Gupta, V.V.S.R., Sharma, A.K. (eds) Rhizosphere Biology: Interactions Between Microbes and Plants. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6125-2_10

Download citation

Publish with us

Policies and ethics