Skip to main content

Dynamic Stability Analysis of an Asymmetric Sandwich Beam on a Sinusoidal Pasternak Foundation

  • Conference paper
  • First Online:
Innovative Product Design and Intelligent Manufacturing Systems

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

  • 1277 Accesses

Abstract

The dynamic stability of an asymmetric sandwich beam with viscoelastic core resting on a sinusoidal varying Pasternak foundation subjected to parametric vibration is observed. The effects of different parameters such as temperature gradient of each elastic layer, the ratio of modulus of the shear layer of Pasternak foundation to Young’s modulus of the elastic layer, core loss factor, stiffness of Pasternak foundation and elastic foundation parameter on the dynamic stability are investigated. Hamilton’s principle, generalized Galerkin’s method and Hill’s equations are utilized, followed by Saito–Otomi conditions to obtain the results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

\(A_{i} (i = 1,2,3)\) :

Cross-sectional Area of ith layer

\(B\) :

Beam width

\(E_{i} (i = 1,3)\) :

Young’s modulus of ith elastic layer

\(g\) :

Shear parameter

\(G_{s}\) :

Foundation’s shear layer modulus

\(G_{2}^{*}\) :

Complex shear modulus of core

\(h_{i} (i = 1,2,3)\) :

Ith layer’s thickness at ‘x

\(I_{i} (i = 1,2,3)\) :

Second moment of inertia about relevant axis

\(l\) :

Length of beam

\(l_{h1}\) :

\(l/h_{10}\)

\(d\) :

Shear layer thickness of foundation

\(m\) :

Mass per unit length of beam

\(\rho_{i}\) :

Ith layer’s density

\(\overline{\omega }\) :

Nondimensional forcing frequency

\(\delta_{i} (i = 1,3)\) :

Constant temperature gradient of ith layer

\(t\) :

Time

\(\overline{t}\) :

Nondimensional time

\(w(x,t)\) :

Lateral deflection of beam at ‘x

\(p\) :

Number of functions

References

  1. Dash PR, Maharathi BB, Ray K (2010) Dynamic stability of an asymmetric sandwich beam resting on a pasternak foundation. J Aerosp Sc Technol 62(1):66

    Google Scholar 

  2. Hetényi M (1962) Beams on elastic foundation: theory with applications in the fields of civil and mechanical engineering. University of Michigan Press

    Google Scholar 

  3. Wang TM, Stephens JE (1977) Natural frequencies of Timoshenko beams on Pasternak foundations. J Sound Vibr 51:149–155

    Article  Google Scholar 

  4. Kar RC, Sujata T (1990) Parametric instability of Timoshenko beam with thermal gradient resting on a variable Pasternak foundation. Comput Struct 36 (4):659–665

    Article  Google Scholar 

  5. Kar RC, Sujata T (1988) Parametric instability of a non-uniform beam with thermal gradient resting on a Pasternak foundation. Comput Struct 29(4):591–599

    Article  Google Scholar 

  6. Nayak S, Bisoi A, Dash PR, Pradhan PK (2014) Static stability of a viscoelastically supported asymmetric sandwich beam with thermal gradient. Int J Adv Struct Eng 6(3):65

    Article  Google Scholar 

  7. Pradhan M, Dash PR (2016) Stability of an asymmetric tapered sandwich beam resting on a variable Pasternak foundation subjected to a pulsating axial load with thermal gradient. Compos Struct 140:816–834

    Article  Google Scholar 

  8. Pradhan M, Mishra MK, Dash PR (2016) Stability analysis of an asymmetric tapered sandwich beam with thermal gradient. Procedia Eng 144:908–916

    Article  MathSciNet  Google Scholar 

  9. Pradhan M, Dash PR, Pradhan PK (2016) Static and dynamic stability analysis of an asymmetric sandwich beam resting on a variable Pasternak foundation subjected to thermal gradient. Meccanica 51(3):725–739

    Article  Google Scholar 

  10. Ray K, Kar RC (1995) Parametric instability of a sandwich beam under various boundary conditions. Comput Struct 55(5):857–870

    Article  Google Scholar 

  11. Kerwin EM Jr (1959) Damping of flexural waves by a constrained viscoelastic layer. J Acoust Soc Am 31(7):952–962

    Article  Google Scholar 

  12. Rao DK, Stuhler W (1977) Frequency and loss factors of tapered symmetric sandwich beams. J Appl Mech 44(3):511–513

    Article  Google Scholar 

  13. Saito H, Otomi K (1979) Parametric response of viscoelastically supported beams. J Sound Vib 63(2):169–178

    Google Scholar 

  14. Dash P, Nayak DK (2019) Determination of economical and stable rotating tapered sandwich beam experiencing parametric vibration and temperature gradient. Journal of the Institution of Engineers (India): Series C, 100(6):879–890

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nayak, D.K., Pradhan, M., Jena, P.K., Dash, P. (2020). Dynamic Stability Analysis of an Asymmetric Sandwich Beam on a Sinusoidal Pasternak Foundation. In: Deepak, B., Parhi, D., Jena, P. (eds) Innovative Product Design and Intelligent Manufacturing Systems. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2696-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2696-1_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2695-4

  • Online ISBN: 978-981-15-2696-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics